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Altered cortical surface complexity and gyrification differences may be a potentially sensitive marker for
several neurodevelopmental disorders. We propose to use spherical harmonic (SPH) constructions to
measure cortical surface folding complexity. First, we demonstrate that the complexity measure is accurate,
by applying our SPH approach and the more traditional box-counting method to von Koch fractal surfaces
with known fractal dimension (FD) values. The SPH approach is then applied to study complexity differences
between 87 patients with DSM-IV schizophrenia (with stable psychopathology and treated with
antipsychotic medication; 48 male/39 female; mean age=35.5 years, SD=11.0) and 108 matched healthy
controls (68 male/40 female; mean age=32.1 years, SD=10.0). The global FD for the right hemisphere in the
schizophrenia group was significantly reduced. Regionally, reduced complexity was also found in temporal,
frontal, and cingulate regions in the right hemisphere, and temporal and prefrontal regions in the left
hemisphere. These results are discussed in terms of previously published findings. Finally, the anatomical
implications of a reduced FD are highlighted through comparison of two subjects with vastly different
complexity maps.
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Introduction

In clinical neuroscience, the brains of individuals with a neuro-
logical or psychiatric disorder are often found to be structurally
different from the brains of healthy subjects. Furthermore, patterns of
systematic structural differences have been found to be consistent for
subjects with a given disorder, such that the pattern of differences
depends on the specific disease. Detection of characteristic neuroan-
atomical patterns in patients with psychiatric disorders is likely to
lead to a variety of advances in diagnosis, treatment, and prevention
of psychological illness. For instance, it is at least logically possible
that early diagnosis may be made in a prodromal phase, before the
onset of symptoms, allowing preventative measures to be taken so
that no symptoms ever appear. Since the introduction of magnetic
resonance imaging (MRI) and other imaging techniques that allow in
vivo measurement of brain structure, finding specific structural
differences that characterize different psychiatric and neurogenetic
disorders is a real possibility.

Already, several methods have been proposed to find potentially
very subtle structural differences (Thompson et al., 2004). Approaches
to measure differences may either be based on 3D volumetric
assessments or 3D statistical mapping of gray or white matter
structures, or may involve making measurements on 3D surface
models of a structure, such as the cortex or hippocampus (MacDonald
et al., 2000; Mangin et al., 1995; Morra et al., 2009; Wang et al., 2010;
Xu et al., 1999). Volume-based approaches are most appropriate for
measuring differences in gray matter density or in regional volumes,
such as for subcortical structures. Surface-based methods can
measure cortical thickness or cortical folding patterns, as well as
shape or curvature measures derived from the imposed surface
coordinate system (Gutman et al., 2009; Luders et al., 2006; Lui et al.,
2010). Our focus here is on analyzing cortical folding patterns.

Previously, the most common approach to measuring cortical
folding complexity was to use a metric such as the gyrification index
(GI), which is defined as the ratio of the inner surface size to the outer
surface size of an outer (usually convex) hull. The GI can be measured
in two dimensions by examining cortical slices (Zilles et al., 1988), or
in 3D by using a reconstructed surface mesh. However, the GI metric
depends on how the outer hull is defined and how brains are
normalized to reduce the effect of brain size, whichmay result in large
differences in reported values across studies. There may also be an
influence of slicing direction for measures derived from 2D sections of
a 3D object – if more convolutions are apparent in a given plane of
section, the measured complexity may tend to be higher. In other
words, the method is not intrinsic. Another potential confound is
noise in the surface reconstruction, which could artificially inflate
surface area without corresponding to the underlying anatomy.

These drawbacks can be circumvented by using the fractal
dimension (FD), which does not rely on defining an explicit outer

http://dx.doi.org/10.1016/j.neuroimage.2011.02.007
mailto:rachel.yotter@uni-jena.de
http://dx.doi.org/10.1016/j.neuroimage.2011.02.007
http://www.sciencedirect.com/science/journal/10538119


1 The maximum l-value does not significantly affect the complexity calculation if the
full reconstruction retains most of the details of the original surface mesh (i.e., greater
than approximately 128). The only effect is a shift in the x-intercept due to a different
surface area for the fully reconstructed mesh.
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hull (for a review, see Lopes and Betrouni, 2009). It has been proposed
that the brain is approximately a fractal (Kiselev et al., 2003), at least
over a limited range of scales (Jiang et al., 2008; Lee et al., 2004;
Mandelbrot and Blumen, 1989). This property has been evaluated
using voxel-based information about the shape of the white matter
volume (Bullmore et al., 1994; Liu et al., 2003; Zhang et al., 2007;
Zhang et al., 2006). The FD can also be applied to measure cortical
folding complexity, and previous studies have shown significant
differences in regional FD for psychiatric disorders such as schizo-
phrenia (Casanova et al., 1989; Narr et al., 2004; Narr et al., 2001),
obsessive-compulsive disorder (Ha et al., 2005), epilepsy (Free et al.,
1996), Alzheimer's disease (King et al., 2009, 2010), multiple sclerosis
(Esteban et al., 2007s, 2009), cerebellar degeneration (Wu et al.,
2010), stroke (Zhang et al., 2008a), autism (Awate et al., 2008), and
Williams syndrome (Thompson et al., 2005), as well as for normal
development (Awate et al., 2010; Blanton et al., 2001; Kalmanti and
Maris, 2007; Shyu et al., 2010; Wu et al., 2009), early-life blindness
(Zhang et al., 2008b), and IQ (Im et al., 2006). Furthermore, some
studies report local FD or folding differences for genetic factors such as
22q11 deletion syndrome (Schaer et al., 2008), gender (Awate et al.,
2009; Luders et al., 2004), and brain size (Toro et al., 2008).

Most calculations of the cortical surface FD rely on the box-
counting method, which calculates regional areas for progressively
lower sampling resolutions. Since the number of vertices steadily
decreases, the position of these vertices can have a large impact on the
FD metric and can potentially overlook relevant cortical folding
information (Free et al., 1996; King et al., 2009). This concern can be
addressed by aligning sulci across subjects to approximate the same
cortical location for each vertex for all subjects (Thompson et al.,
1996). However, alignment is a complicated endeavor that often
requires manual delineation of areas that correspond geometrically
across subjects, such as gyral landmarks or cortical sulci. Another
possibility is to use a series of dilated disks of different sizes to cover
the surface, reducing but not eliminating orientation dependencies
(Free et al., 1996).

Rather than using box-counting approaches, we propose to extract
surface complexity information using spherical harmonic (SPH)
reconstructions (Yotter et al., 2010). By using SPH reconstructions,
the number of vertices remains the same for all reconstructed
surfaces, thus reducing the influence of individual vertex alignment
and avoiding the need to progressively re-grid the surface, which
incurs error from interpolation. Furthermore, analysis of structural
characteristics in some clinical disorders may be improved by
investigating the pattern of regional differences rather than a single
global metric. For instance, it has been shown that pattern
classification techniques can enhance the specificity of morphometric
findings (Davatzikos et al., 2005; Kawasaki et al., 2007; Soriano-Mas
et al., 2007; Sun et al., 2009; Yushkevich et al., 2005).

One advantage of this approach is the use of information from
multiple brain regions when developing a characteristic neuroana-
tomical signature. This may be helpful in studies of mental illnesses,
e.g., schizophrenia, which we examine here. Using SPH-derived
reconstructions, we will demonstrate that it is possible to calculate
a local FD for each vertex within the reconstruction, which is the first
step towards obtaining accurate neuroanatomical signatures of
disease states.

This paper is divided into two parts. In the first section, we
compare our SPH-derived FD values to those obtained using the more
traditional box-counting approach. We then compare both measures
to the ground truth. We accomplish this by analyzing “von Koch”
surfaces with known FD values. Furthermore, we analyze how robust
the twomeasures are, using a brain surface rotated around each of the
three axes. In the second section, we then apply our approach to data
from schizophrenia and control subjects, as an illustrative application,
and to assess evidence for regional and local differences in cortical
complexity. The findings from this analysis are compared to
previously published results from other methods. Finally, we discuss
the implications of the cortical complexity value in clinical and struc-
tural terms.

Methods

Spherical harmonic approach to measuring complexity

Generally, FD is computed by finding the slope of a plot regressing
log(area) versus log(dimension), over a certain range of scales. In this
regression – also called a multi-fractal plot – the dimension indicates
the scale of measurement, which is varied either by sub-sampling the
object, or by reducing the degree of the shape representation. When
using spherical harmonic reconstructions, the plot is modified to use
themaximum l-value (or degree, see Appendix) of the reconstruction,
and the slope may be found by regressing log(area) versus log(max l-
value) (Fig. 1). Complexity can be calculated at different scales: global,
regional, and local. The global complexity is a single value for the
entire hemisphere; regional or local values are a set of values for
regions of interest or vertices, respectively.

To obtain these values, for each hemisphere we extracted the
spherical harmonic coefficients of the central surface up to a
maximum l-value of 1024.1 The spherically remapped points were
transformed into harmonic space using a modification of the fast
Fourier transform (Kostelec et al., 2000). The Appendix gives details
on the spherical harmonic analysis. Finally, the surfaces were re-
parameterized using a low-distortion spherical mapping of the central
surface.

Fractal dimension is calculated by finding the slope of the linear
portion of the log-log plot of area versus maximum l-value. This linear
portion generally occurs when the total reconstructed surface area is
between 40% and 80% of the full surface area. To reduce computation
time, for brain surfaces 10 separate reconstructionswere chosen using
maximum l-values between 11 and 29. These l-values achieved
optimal results for brain surfaces, resulting in surface areas that varied
from approximately 40% to 75% of the maximum surface area (Yotter
et al., 2010). For the von Koch surfaces, the linear portion of the slope
occurred for maximum l-values between 5 and 8; for the results
shown, all four reconstructions were used to calculate the FD values.

Calculation of the global complexity value was obtained directly
from the total surface area of the reconstructions. For each subject, a
set of initial local values was also produced. First, complexity values
for each polygon were estimated by regressing the log–log plot of
normalized area of the polygon versus the maximum l-value. Second,
point-wise complexity values were obtained by averaging the
complexity values of all neighboring polygons. This resulted in a set
of unsmoothed raw local complexity values for each subject.

For both local and global measures, the area values for the
spherical harmonic reconstructions were normalized by the area
values in the full-coefficient reconstruction (l-value=1024), whose
surface area deviated by an infinitesimal amount from the original
surface area. Although the original surface area could be used, the full-
reconstruction surface area was used for consistency across all
complexity measures (local and global). For the local complexity
calculation, the surface area of each polygonwas normalized using the
area of the matching polygon in this reconstruction. This normaliza-
tion step makes the complexity value somewhat independent of the
surface area of the original surface; however, since smaller brains tend
to have higher levels of folding detail, it is not possible to completely
remove correlations between brain size and complexity. Furthermore,
the regression slope is independent of the original surface area,



Fig. 1. Fractal dimension is found by finding the slope of a logarithmic plot of surface area versus the maximum l-value of the reconstruction (a measure of the bandwidth of
frequencies used to reconstruct the surface shape; shown here in red font for a range of bandwidths). Surface areas are normalized by the original surface area. A linear
approximation is reasonable over this range of scales.
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which is reflected simply as a shift in the x-intercept of the linear
approximation.

Before comparing values across subjects, local values must first be
represented in a common coordinate system, which is achieved via re-
parameterization of the unsmoothed raw values. This was accom-
plished using the registered spherical mapping for each subject (xh.
sphere.reg), then re-parameterizing the local FD values using the
fsaverage spherical mesh included in FreeSurfer. These values were
then smoothed using a 30-mm Gaussian heat kernel (Chung et al.,
2005), where the width of the smoothing filter was chosen according
to the matched filter theorem. That is, the spatial frequency of the
sulcal/gyral pattern suggests a filter that optimally enhances features
in the range of the distance between sulci and gyri, which is about 20–
30 mm.

These smoothed, registered local complexity values were then
used for all statistical analyses. Regional values were obtained by
averaging the complexity values associated with a particular region of
interest. A flowchart of the steps taken to obtain complexity values is
shown in Fig. 2.

Box-counting approach to measuring complexity

The definition of fractal dimension is related to the number of self-
similar shapes versus the characteristic dimension, as follows:

FD =
log N lð Þ
log 1 = l

; ð1Þ

where l is the characteristic dimension and N(l) is the number of self-
similar shapes with dimension l required to cover the original object.
Under certain conditions, namely when all objects are of uniform size
Fig. 2. A flowchart of the calculation process illustrates at which stages each set of complex
central surface mesh. Area values from these reconstructions are used to directly calculat
coordinate system across subjects; this data is then smoothed to derive the local FD values
and shape, this fractal dimension value may be calculated directly;
however, in most applications, there are no uniform shapes to be
counted. Fortunately, the number of self-similar objects N(l) can be
related to the total volume or area of the object. Since our application
focuses on surface shape analysis, we are interested in area. Generally,
the relationship between the number of objects N(l) and surface area
A can be related as follows:

N lð Þ∝ A
l2
: ð2Þ

Thus a complexity value can be calculated using the surface area
rather than the number of self-similar objects, but the values will
deviate from the true Hausdorff dimension of the fractal surface if the
fractal dimension were computed directly, by a factor of 1/log(l2).

For the box-counting method, the surface was re-sampled at
progressively lower resolution, and the surface areas were normal-
ized, so that a value of 1 indicates that the surface area of the re-
parameterized surface is equivalent to the original surface area. We
opted to use regular Platonic solids to avoid non-uniform re-sampling
as much as possible. The FD was found by finding the slope of the
linear portion of a log–log plot in which the x-axis is the dimension (or
characteristic length) and the y-axis is the surface area. For all surfaces
(von Koch and cortical), the re-sampling resolutions within the linear
portion of the regression ranged from 80 to 5120 points. To derive the
dimension, the x-axis was set to the square root of the inverse of the
triangle count, which is proportional to the length of a triangle edge.

To obtain local FD values, the down-sampled reconstruction was
then re-sampled back into the original coordinate space. The FD value
was then calculated for each polygon by regressing log(area) versus
log(dimension), then point-wise values were calculated by averaging
ity values are calculated. First, spherical harmonic reconstructions are derived from a
e the global FD values. The area information is also re-parameterized into a common
. Finally, regional values are averaged to obtain regional FD values.

image of Fig.�1
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the values of neighboring polygons. Regional FD values were obtained
by averaging the local FD values for all points within the region.

All attempts were made to obtain high-quality results for the box-
counting approach, including careful examination of the log–log plots,
the choice of dimensions, and the inclusion of a constant offset for all
values.
von Koch surfaces

To determine whether the FD values obtained from SPH-derived
reconstructions were accurate, we generated a variety of von Koch-
like fractal surfaces of either tetrahedral or cubic structure. These
surfaces have an FD that is computable mathematically, as well as by
the SPH and box-counting algorithms. Because true von Koch surfaces
result in self-intersections, the surfaces needed to be modified to
avoid self-intersections, so that the Euler characteristic remained
equal to 2 and the surfaces could be projected to a sphere. This was
accomplished by simply reducing the length of the surface normal
used to calculate the projecting structure. Specifically, the surface
normal is l*sqrt(2/3) for tetrahedral and l for cubic von Koch surfaces,
while themodified surfaces had normal lengths of l*sqrt(2/3)/s and l/s,
respectively, where l is the characteristic dimension and s is what we
will term the projection scale.

Despite this modification, the von Koch surfaces still had
characteristic FD values determined by measuring the slope of a
log–log plot of total surface area versus characteristic dimension
(Fig. 3). The accuracy of these measurements was validated by
generating a true von Koch surface and confirming that its FD value
matched the theoretical value (results not shown). These FD values
are the “true” values by which other approximation methods can be
evaluated.

To test the ability to accurately discern local FD differences, a set of
surfaces was constructed such that each of the faces used a different
projection scale and thus had a unique fractal dimension.

In summary, the tetrahedral structures used six different projec-
tion scales (1.5, 2.0, 2.5, 3.0, 3.5, and 4.0) and three different charac-
teristic dimensions or complexity levels, such that there were 18
surfaces plus three combination surfaces, which used four of the six
projection scales; the cubic structures used six different projection
scales and three complexity levels, resulting in 18 surfaces plus the
three combination surfaces. The point resolution of all surfaces was
chosen so that the number of mesh points was approximately
equivalent to the number of points typically used for surface
representations of cortical surface structure. For both approaches,
the set of re-sampling resolutions or bandwidths was chosen so that
the resultant global fractal dimension values were as closely matched
Fig. 3.Modified von Koch fractal surfaces with either a cubic (top row, left) or tetrahedral (b
detail, obtained by inserting self-similar shapes at lower dimensions. A log–log plot of surfac
levels results in a linear fit (right); the slope of this line is the characteristic FD.
to the true fractal dimension values. Fitting of these values also
included a constant offset for each value in the set.
Statistical analysis

Statistical differences in global, regional, and local FD values were
assessed using a two-tailed t-test. Regression of age and sex in the
schizophrenia study did not affect the results. The resulting t values
were thresholded at a p-value of pb0.05, and local and regional values
were either corrected for multiple comparisons using the False Dis-
covery Rate (FDR) method (Benjamini and Hochberg, 1995) or left
uncorrected.
Subjects

We studied 87 patients with a DSM-IV diagnosis of schizophrenia
and 108 healthy controls. The patients (n=87; 48 male/39 female;
mean age=35.5 years, SD=11.0) were recruited from the Depart-
ment of Psychiatry in Jena and first screened with a semi-structured
interview before being assessed by two psychiatrists establishing the
DSM-IV diagnosis. None of the patients had a second psychiatric,
neurological or major medical condition. All patients were inpatients.
None of them was in an acute episode of illness; all were in remitted
clinical state, showed stable psychopathology, and were on stable
antipsychotic medication. Current psychopathology in patients was
assessed with the Scales for Assessment of Positive Symptoms (SAPS),
and Scales for Assessment of Negative Symptoms (SANS), which was
administered by an experienced and trained clinical psychiatrist
(Andreasen et al., 1995). Healthy controls (n=108; 68 male/40
female; mean age=32.1 years, SD=10.0) were recruited from the
city of Jena and surrounding counties and matched to the patients
with regard to sex, age, and overall school/academic achievement.
They were screened to exclude a concurrent or past history of
psychiatric, neurological, or major medical conditions using a semi-
structured interview. Further exclusion criteria for both samples
included a history of head trauma, concurrent or previous substance
dependence or alcoholism, and learning disability (mental retarda-
tion). All subjects were right-handed, as scored from the short version
of the Edinburgh Handedness Scale (Oldfield, 1971). All participants
gave written informed consent to a study protocol approved by the
Ethics Committee of the Friedrich-Schiller University of Jena. Details
of this patient groupmay be found in Nenadic et al. (2010); a subset of
this sample (n=12) were excluded due to poor surface reconstruc-
tion quality, which was based on visual inspection and rating by an
expert (G. Z.).
ottom row, left) topology. Each set includes surfaces with progressively higher levels of
e area versus characteristic dimension (or width of the smallest feature) for three fractal

image of Fig.�3
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Imaging protocol

We obtained a high-resolution structural MRI for each subject on a
1.5-T Phillips Gyroscan ASCII system using a T1-weighted sequence,
including 256 sagittal slices covering the entire brain (TR=13 ms,
TE=5 ms, 25° flip angle, field of view [FOV]=256 mm, voxel
dimensions=1×1×1 mm3) for all subjects. Foam pads were used,
where appropriate, to further restrict head movement. Prior to image
processing, each image was checked visually for artifacts. In addition,
we used an automated tool to detect outliers implemented in the
VBM8 package. All scans passed both manual and automated quality
checks.

Cortical surface extraction

Image volumes passed through a number of preprocessing steps
using mostly automated procedures included in the FreeSurfer
software suite, version 4.5 (http://surfer.nmr.mgh.harvard.edu).
Details of the processing steps have been described previously (Dale
et al., 1999; Fischl et al., 1999a, 1999b). In brief, images were prepro-
cessed using intensity normalization and skull stripping, followed by
normalizing the head position along the commissural axis and
labeling cortical and subcortical regions. Images were then segmen-
ted, as follows (Fischl and Dale, 2000). First, images were rigid-body
registered to a probabilistic brain atlas, followed by non-linear
morphing to the atlas. Depending on the probability that a given
location is of a particular tissue class, the intensity of the image at the
location, and the local spatial configuration of the location in relation
to the labels, each voxel is then assigned to one specific tissue class
(gray matter, white matter, CSF, or background).

A white matter surface was derived from the white matter tissue
segmentation map using the marching cubes algorithm, followed by
topology correction. By outwardly deforming the white matter
surface, the pial surface was also generated (Dale et al., 1999; Fischl
and Dale, 2000). As a final step, the pial and white matter surfaces
were averaged together, vertex-by-vertex, to construct a central
surface. The central surface meshes were then used as the input for
complexity analysis using our spherical harmonic approach. Before
comparing local and regional values across subjects, the local FD
values were re-sampled such that all values were registered to the
FreeSurfer average template using the default registration algorithm
(Fischl et al., 1999b).

Validation

Results

Fractal dimension measurement accuracy for methods using box-
counting and spherical harmonics. The fractal dimension for the von
Koch surfaces was modified by adjusting the scale used for the
projecting structures, such that a projection scale value of 1.0 is a true
von Koch surface and values larger than that is the ratio by which the
projection scale has been reduced. This eliminates self-intersections
in the structures and offers an approach to modify the fractal dimen-
sion values without large topological changes. Note that if the number
of triangles or squares is plotted against the characteristic dimension,
this process yields a Hausdorff dimension of 2.5849 for the tetrahedral
surfaces and 2.3347 for the cubic surfaces, independent of the projec-
tion scale.

When comparing reconstructions of level-3 surfaces from the box-
counting method (Fig. 4) to the SPH approach (Fig. 5), there are
striking similarities. Both lose fine detail as the re-sampling resolution
or the maximum l-value decreases. Because the SPH approach does
not down-sample the mesh resolution, the reconstructions are more
regular and of higher quality than those created from the box-
counting method. However, the plots of surface area versus charac-
teristic dimension or maximum l-value are similar.

For all of the modified von Koch surfaces, the FD measures
obtained from the SPH approach were more accurate than those
derived from the box-counting method, at both the global (or overall)
and regional levels (Fig. 6). For tetrahedral topologies, the resultant
FD values are virtually identical to the “true” FD values, and the
measurement variability over different levels of complexity is low.

Local variations in fractal dimension were simulated using von
Koch fractal surfaces that had a different projection scale for each
surface face. At the regional level, the SPH approach effectively mea-
sures the differences between the complexity values of each face,
while the box-counting approach produces large errors, to the extent
that some faces having lower complexity appear to have higher
complexity. Because the spherical harmonic approach re-samples the
spherical mesh at very high resolution (rather than down-sampling as
with box-counting), the local fractal dimension maps are much more
regular than those obtained from the box-counting approach (Fig. 7).

Measures on a rotated cortical surface. Validation of the measures on
cortical surfaces is difficult since the approach is new and there are no
cortical surfaces with precisely known fractal dimension values.
However, it is possible to manipulate a cortical surface in a prescribed
way, measure the change in the resulting values, and assess whether
the effects coincide with expectation. One of the simplest manipula-
tions is a rotation of the surface around rotational axes, e.g., pitch,
yaw, and roll.

In theory, the complexity measure for a brain surface should
remain constant, even if the surface is rotated. However, the global
fractal dimension value for the box-counting approach varies widely
with respect to the angle by which the surface is rotated (Fig. 8). This
is clearly undesirable, as the summary measure of the properties of an
object should not heavily depend upon its orientation. Furthermore,
the correlation between the local FD values of rotated and un-rotated
surfaces for the box-counting method only approaches a value of 1 for
a rotation of 180° (Fig. 9). In contrast, the spherical harmonic derived
values for global FD remain more constant, and the local FD
correlation between all rotated surfaces and the un-rotated surface
was never lower than 1.0.

Discussion

Validation of SPH approach using von Koch surfaces. Analysis of the von
Koch surfaces, whose fractal dimensions are known, demonstrated
that the complexity values obtained from spherical harmonic
reconstructions are generally more accurate than those obtained
from the box-counting approach. Because they are less severely
affected by re-sampling, interpolation, and object alignment, the
resultant local complexity maps from SPH reconstructions tend to be
more regular than those obtained from box-counting. This presum-
ably makes measures more accurate and less prone to error at both
the regional and global levels.

Further evidence of the improved performance of the SPH
approach was obtained by simply rotating a cortical brain surface
around the three cardinal axes. The large measurement differences
imply that box-counting will only give measures that are comparable
across subjects if brain surfaces are first carefully registered to each
other, such that all re-sampled points in the down-sampled meshes
roughly correspond to each other for all brain surfaces. Due to the
dependence of the results on orientation of the brain, it can be
presumed that box-counting would also be highly dependent upon
the accuracy of the registration method employed. Conversely, the
spherical harmonic approach is less dependent upon the orientation
of the brain surfaces, and thus does not require careful registration in
order to extract valid complexity values.

http://surfer.nmr.mgh.harvard.edu


Fig. 4. Box-counting can measure the fractal dimension. Here we show a level-3 cubic von Koch surface with a projection scale of 2.0 re-sampled at various resolutions; the numbers
indicate the triangle count in the re-sampled mesh. Below, we plot the normalized surface area versus dimension on a log–log scale, for detail levels 0–3. Fractal dimension can be
estimated by measuring the slope over a range of scales that results in an approximately linear function. The area of the re-sampled surface is divided by the surface area of the
original mesh.
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Application to schizophrenia

Results
Wedetected no significant group differences between patients and

controls for the global FD values in the left hemisphere (control:
2.5820±0.0002; schizophrenia: 2.5789±0.0003; p=0.4252), but
there was a significant difference in the right hemisphere (control:
2.5871±0.0003; schizophrenia: 2.5729±0.0003; p=0.0007). Inter-
estingly, there were also significant differences between groups for
surface area in both hemispheres (left hemisphere: control: 923.70
cm2; schizophrenia: 895.40 cm2; p=0.0234; right hemisphere:
control: 925.58 cm2; schizophrenia: 894.91 cm2; p=0.0147), but
not between right and left hemispheres within groups (control:
p=0.8776; schizophrenia: p=0.9689).

Regionally, the FD values in the schizophrenia group were
significantly lower than those for controls, bilaterally in the precentral
gyrus; in the caudal anterior cingulate gyrus and frontal pole in the
left hemisphere; and the corpus callosum, lingual gyrus, and superior
parietal lobe in the right hemisphere (Table 1). Patients had
significantly higher regional surface complexity in the cuneus,
isthmus cingulate gyrus, lateral orbitofrontal gyrus, paracentral
gyrus, posterior cingulate cortex, and transverse temporal gyrus in
the left hemisphere. These regions are highlighted in Fig. 10.

An unusual feature of the values in Table 1 is that two values are
not within the range of 2.0–3.0. Most definitions of fractal dimension
imply that the value must be lower than the embedding dimension,
which is 3.0 for a 3-dimensional surface (Mehaute, 1991). However,
the definition of fractal dimension used here is not the exact Hausdorff
dimension, thus can result in values outside this range. In the right
hemisphere, the frontal pole region defies this rule. It is a highly
folded gyral region that contains a relatively small number of
polygons, and this deviation may be due to loss of resolution in that
area.

The local FD maps revealed that the lower overall complexity in
the right hemisphere was attributable to differences in the parietal
and temporal lobes (Fig. 11). Local complexity was also lower for the
prefrontal and temporal cortex in the left hemisphere, but only
prefrontal ROIs in the left hemisphere showed significantly lower FD
in the patient group.

Discussion

Surface complexity in schizophrenia. For the whole hemisphere,
complexity analysis of the schizophrenia patient group revealed a
global reduction in surface complexity in the right hemisphere only.
This lateralization corresponds with some previous studies that
detected lateralized gray matter reductions in the right hemisphere
(Pantelis et al., 2003). Even so, some studies detected gray matter
deficits only in the left hemisphere (Honea et al., 2005; Hulshoff Pol
et al., 2006). Furthermore, prior studies of cortical folding found either
bilateral or left-hemisphere reductions in GI for the schizophrenia
group (Sallet et al., 2003) or no differences (Noga et al., 1995).
Measuring the FD of a skeleton representing the cortical folding
pattern revealed significantly lower FD values for both hemispheres in
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Fig. 5. Fractal dimension may be computed from a series of SPH low-pass filtered reconstructed surfaces. Top two rows: we show a series of level-3 cubic surfaces with projection
scale of 2.0 that have been low-pass filtered; the numbers indicate themaximum l-value used in the filter. Below, we plot the normalized surface area versus themaximum l-value on
a log–log scale, for detail levels 0–3. Fractal dimension can be estimated by measuring the slope over a range of l-values that results in an approximately linear function. The surface
area of the reconstructed surface is divided by the surface area of the original mesh.

Fig. 6. Global and regional fractal dimension measurements obtained from spherical harmonic reconstructions are more accurate than those obtained from the box-counting
approach. The average FD values – shownwith standard errors of themeans (SEM) – are averaged from three levels of complexity for each projection scale. Regional (ROI) values are
obtained from averaged local FD values from a combined surface in which each face uses a different projection scale.
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Fig. 7. A map of local fractal dimension based on the box-counting (top row) and spherical harmonics (bottom row) methods was calculated for a von Koch surface with varying
projection scales on each surface. The level-3 surface is shown here, and the numbers represent the projection scale of each face, such that face 1.5 has the largest features. The
spherical harmonic mapping clearly marks structures with higher complexity with a larger fractal dimension value, while the box-counting approach depends strongly upon the re-
sampled points.
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the patient group (Ha et al., 2005). This was similar to the result found
using box-counting estimation of FD for the boundary between GM
and WM (Bullmore et al., 1994). However, another study found an
increase in FD for both hemispheres (Sandu et al., 2008). Since these
complexity measures were of the GM/WM boundary, however, they
may not account for any possible gray matter abnormalities and may
have a different etiology.

The pattern of regional structural differences in schizophrenia
versus controls is even more heterogeneous across studies, both in
terms of gray matter reduction (Weinberger and McClure, 2002) and
in gyrification index (Wheeler and Harper, 2007). However, the most
consistently reported findings include gray matter reduction in the
temporal (Goldman et al., 2008; Honea et al., 2005; McDonald et al.,
2006; Wright et al., 2000) and frontal lobes (Honea et al., 2008;
Thompson et al., 2009), along with an increase in the size of the lateral
ventricles (Steen et al., 2006). Regional complexity analysis revealed
significant decreases in complexity for the frontal lobe areas in both
hemispheres, which is similar to previous studies reporting bilateral
complexity differences in the frontal cortex (Narr et al., 2001);
however, another study showed only right hemisphere GI increases in
the prefrontal cortex (Vogeley et al., 2000; Vogeley et al., 2001).
Fig. 8. The global fractal dimension value can depend upon the orientation of a brain
surface. Rotating one brain surface around the three axes results in relatively large
errors in global fractal dimension values for the box-counting approach, while the
errors remain vanishingly small for the proposed spherical harmonic approach.
The evaluation of the clinical results is further complicated by the
fact that the underlying pathogenetic causes for schizophrenia are
heterogeneous. For example, disturbances in neurodevelopment
might be influenced by genetic factors or obstetric complications,
which might lead to different patterns of FD change compared to
those patients who have little genetic risk but suffer a “second hit,”
e.g., during adolescence. It is therefore necessary to conceive of
multiple subsyndromes within schizophrenia. Hence, when all
patients are analyzed as a single group, any structural abnormalities
potentially related to specific subsyndromes are lost or greatly
diluted. Furthermore, our local FD analyses were not corrected for
multiple comparisons, and were provided solely to demonstrate that
this methodological approach can calculate highly localized complex-
ity values. To further complicate the analysis, direct comparison to GI
or gray matter volume reduction cannot be made, since the
complexity is a different type of measure (Thompson et al., 2005).
This last point is discussed below in more detail.

Dividing patients according to the subtypes defined in DBM-IIIR or
DSM-IV diagnostic criteria may be limited by the fact that the cross-
sectional psychopathology could vary from one psychotic episode to
another, hence obscuring the identification of the causal pathogenetic
mechanism (Gaser et al., 2004). However, using voxel-based
morphometry, we have previously demonstrated that there is
considerable brain structural variation related to symptom profiles,
especially for the prefrontal cortex, thalamus, and temporal lobe
(Nenadic et al., 2010).

The heterogeneity of these findings suggest that there is further
improvements to be made in both defining schizophrenia as a
psychiatric disease and in developing a standardized method to
measure potentially small structural differences. It could be argued
that the contradictory results are entirely due to methodological
differences, diverse patient groups, or small sample sizes. It is also
possible, as in any study, that unmodeled confounds mediate the
differences. The algorithm proposed in this paper may overcome
some of the methodological difficulties for measuring cortical surface
complexity. It computes localizedmaps of complexity values that may
be used to generate surface patterns. When combined with machine
learning approaches, these patterns may be able to accurately classify
certain disease states (Sun et al., 2009).

Interpretation of surface complexity measures. In order to clinically
interpret a difference in measured complexity, it is important to be
able to relate the value to a more conventionally accepted structural
difference. Unlike gray matter differences, cortical thickness, or

image of Fig.�7
image of Fig.�8


Fig. 9. Despite rotation along axes, the correlation between the derived local fractal dimension values and the original values from the un-rotated surface should remain (nearly)
perfect. For the spherical harmonic approach, the correlation is unaffected by the rotation and is never lower than 1. However, only a rotation of 180° results in a correlation
approaching a value of 1 for the box-counting approach.

969R.A. Yotter et al. / NeuroImage 56 (2011) 961–973
cortical folding differences, surface complexity, especially at a local
level, measures a structural aspect that is perhaps somewhat less
intuitive or less commonly considered. It helps to bear in mind that a
complexity measure does not directly measure the intuitive meaning
of complexity (e.g., more detail), but is a characteristic of the surface
shape. This is true at the global level, and an assumption made in the
above analyses is that these concepts apply to the local level as well.
Table 1
Mean annotated FD for schizophrenia and control subjects, over regions defined using
registration algorithms included in the FreeSurfer software suite.

Region of interest Left hemisphere Right hemisphere

Control Schizo. Control Schizo.

Bankssts 2.8153 2.7792 2.8798 2.8469
Caudal anterior cingulate 2.2952 2.2453 ⁎ 2.0625 2.0415
Caudal middle frontal 2.7336 2.7315 2.6758 2.6612
Corpus callosum 2.1758 2.1634 2.5480 2.5117 ⁎

Cuneus 2.6512 2.6982 ⁎ 2.7209 2.7543
Entorhinal 2.9031 2.9213 2.3385 2.3477
Fusiform 2.5298 2.5095 2.4728 2.4654
Inferior parietal 2.6915 2.7035 2.6445 2.6269
Inferior temporal 2.4693 2.4659 2.5267 2.5152
Isthmus cingulate 2.1848 2.2214 ⁎ 2.7489 2.7448
Lateral occipital 2.5052 2.5074 2.4796 2.4827
Lateral orbitofrontal 2.2668 2.2838 ⁎ 2.3558 2.3514
Lingual 2.5998 2.5825 2.6844 2.6466 ⁎

Medial orbitofrontal 2.4208 2.4476 2.3982 2.3925
Middle temporal 2.6783 2.6869 2.8799 2.8892
Parahippocampal 2.9080 2.9134 2.5354 2.5018
Paracentral 2.4777 2.5018 ⁎ 2.9015 2.9011
Parsopercularis 2.7605 2.7487 2.1845 2.1965
Parsorbitalis 2.9648 2.9595 2.2902 2.2839
Parstriangularis 2.7767 2.7454 2.5394 2.5402
Pericalcarine 2.5802 2.5523 2.8569 2.8436
Postcentral 2.7710 2.7535 2.4979 2.5104
Posterior cingulate 2.4359 2.4832 ⁎ 2.4682 2.4562
Precentral 2.7302 2.7100 ⁎ 2.5844 2.5687 ⁎

Precuneus 2.5641 2.5463 2.7135 2.6881
Rostral anterior cingulate 2.1129 2.0976 2.3120 2.3151
Rostral middle frontal 2.5854 2.5943 2.5850 2.5776
Superior frontal 2.3807 2.3631 ⁎ 2.7530 2.7441
Superior parietal 2.6669 2.6560 2.7326 2.6679 ⁎⁎

Superior temporal 2.7873 2.7694 2.4479 2.4389
Supramarginal 2.6262 2.6221 2.4442 2.4397
Frontal pole 2.7954 2.7510 ⁎ 3.1806 3.2177
Temporal pole 2.8107 2.8225 2.5500 2.5780
Transverse temporal 2.6422 2.7777 ⁎ 1.9581 1.9695

⁎ pb0.05, uncorrected.
⁎⁎ pb0.05, FDR.
Indeed, quantitative support for this assumption is provided by the
relative accuracy of regional fractal dimension differences for the
combined von Koch surfaces.

A fractal is a structure that is self-similar across a range of scales,
and the complexity analysis roughly corresponds to how “space-
filling” the fractal surface is. However, a plot of local complexity
measures for two brains – one with a large FD and one with a small FD
– demonstrates that the relationship between self-similarity, space-
filling, and cortical folding pattern is not particularly straightforward
at the local level (Fig. 12). Generally, regions with a high FD value
appear to be more periodically spaced, such as a sine wave with
regular peaks and troughs. This may be because the more periodically
spaced structures also tend to fill more space over the range of scales
examined for derivation of complexity values. As support for this
concept, the Pearson correlation coefficient between the summed
fractal dimension for both hemispheres and the ratio of surface area
to volume for the entire brain is significantly positive (r=0.4906,
n=195, p=1.67×10−13). Further evidence comes from examining
the change in fractal dimension for each surface. In the above analysis,
Fig. 10. The highlighted regions have significantly different FD values, on average,
between schizophrenia and control subjects. The FD values were significantly different
in the precentral gyrus, caudal anterior cingulate gyrus, frontal pole, cuneus, isthmus
cingulate gyrus, lateral orbitofrontal gyrus, paracentral gyrus, posterior cingulate
cortex, and transverse temporal gyrus in the left hemisphere; and the precentral gyrus,
corpus callosum, lingual gyrus, and superior parietal lobe in the right hemisphere. Blue
colors indicate that the mean values for the schizophrenia group are lower than those
for the control group.
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Fig. 11. Local average FD values are mapped onto a representative cortical surface model for control and schizophrenia groups. Left and right hemispheres are shown. Amap of mean
complexity differences (3rd column) between groups and p-values showing the local significance of the inter-group difference are shown (4th column). Vertices are highlighted if
(uncorrected) pb0.05. For both the mean group difference and p-value maps, blue colors indicate that the mean values for the schizophrenia group are lower than those for the
control group.
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the central surface was used rather than the white matter or pial
surfaces. The fractal dimensions of these surfaces were relatively
stably offset from the fractal dimension value of the central surface,
such that the pial surfaces had higher fractal dimension values and the
white matter surfaces had lower values (Fig. S2). Again, this may be
due to the more (or less) space-filling structure of the pial (or white)
surfaces as compared with the central surface.

The measured FD value for an object depends, to some extent, on
the range of scales examined, and may depend upon the resolution of
the re-sampling, or the largest l-value in the case of spherical
Fig. 12. These two example surfaces have very different cortical complexity values. To v
reconstructions are shown, as well as a local complexity map. In regions of high complexity
apparent in the temporal and frontal lobes.
harmonic reconstructions. A very high resolution re-sampling could
retain high-frequency noise that may be due more to noise in the scan
or the reconstruction protocol than biological aspects of brain
structure. For this reason, we deliberately used fairly low-frequency
reconstructions such that the underlying base shape determines
the resulting FD value. This avoidance of very high frequency informa-
tion should make our approach less dependent on scanner or noise.
When this was tested, the FD value was not completely independent
of scanner, as intensity differences are reflected to some extent
in structural differences in the reconstructed surface mesh. Scanner
isualize what a complexity value means in terms of structure, two low-pass filtered
, the underlying brain structure is more regular, similar to a sine wave, which is most
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biases may influence pre-processing steps such as segmentation
and surface reconstruction. If that is the case, these biases are then
inevitably reflected in the resulting FD value, but should not induce
systematic differences between groups of patients and controls.
However, the pattern of local FD values for the same brain scanned
with different scanners appears to be highly reproducible (Fig. S3).

Conclusion
In this paper, we proposed a new approach to measure cortical

surface complexity from brain surface meshes. The approach relies on
highly smoothed spherical harmonic reconstructions to derive
complexity values, using a new definition of fractal dimension as
the regression of log(surface area) versus log(max l-value). Despite the
new definition, the fractal dimension values can accurately measure
differences in global (or overall) fractal dimension, and is demon-
strably more accurate than the box-counting method. The new
definition is also consistent for this method, thus allowing potential
comparison of results from multiple studies.

Because the number of vertices in each construction remains the
same, calculation of local (vertex-wise) complexity values is straight-
forward. These local values can be used to obtain regional complexity
values by averaging the values from vertices contained within each
region of interest. Using artificial von Koch surfaces, we demonstrated
that the regional values followed the trend for differences in fractal
dimension (i.e., a plot of projection scale versus fractal dimension
remained monotonic). Visual inspection of local FD maps on the von
Koch surfaces revealed a highly regular pattern.

As demonstrated in the rotated cortical surface, the box-counting
method must be preceded by careful feature alignment of the cortical
surfaces to attempt to map re-parameterized points to equivalent
locations across subjects (Thompson et al., 1996). Due to the high-
resolution re-sampling in the spherical harmonic approach, we could
bypass this step without loss of accuracy in global and local com-
plexity measures. However, to minimize variability, subjects were
registered to a common template before analysis.

Cortical surface complexity may be a valid clinical marker for
schizophrenia (Narr et al., 2004), Williams syndrome (Gaser et al.,
2006; Thompson et al., 2005), bipolar disorder (McIntosh et al., 2009),
and obsessive-compulsive disorder (Ha et al., 2005). When applied to
a large sample of schizophrenia and control subjects, the schizophre-
nia subjects had significantly lower cortical surface complexity in the
right hemisphere. Regional and local analyses suggest that there are
differences in the frontal, parietal, and temporal lobes, which should
be examined in more detail. These preliminary findings demonstrate
that our approach can detect relatively small, local differences in
complexity.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.02.007.
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Appendix. Spherical harmonic analysis

To analyze the harmonic content of a surface mesh, the first
required step is to change the parameter space from Cartesian to
spherical coordinates θ and ϕ, where θ is the co-latitude and ϕ is the
azimuthal coordinate. The original spherical mapping is from the
standard FreeSurfer pipeline. Then, grid points are interpolated for
equally sampled values of θ and ϕ for all members in the sets, such
that there are 2B points per set, where B is the degree, or maximum l-
value. For each regularly sampled point, the closest polygon on the
spherical mapping is found. Within the closest polygon, a spatial
location for the interpolated vertex is approximated using barycentric
coordinates. The result is a regularly sampled spherical map in which
every point is associated with a coordinate that gives its location on
the original surface.

Once the surface mesh is re-parameterized, the harmonic content
of a spherical mesh may be obtained using normalized spherical
harmonics Ylm (θ, ϕ):

Ym
l θ;ϕð Þ = Pm

l cos θð Þeimϕ
; ð3Þ

where l and m are integers with |m|≤ l, and Pl
m is the associated

Legendre function defined by:

Pm
l xð Þ = 1

2ll!
1−x2

� �
m
2
dl + m

dxl + m
x2−1

� �l
: ð4Þ

A square-integrable function f(θ,ϕ) on the sphere may be
expanded in the spherical harmonic basis such that:

f θ;ϕð Þ = ∑
B

l=0
∑
l

m=−l
jjYm

l jj−2

2 f̂ l;mð Þ⋅Ym
l ; ð5Þ

where the coefficients f̂(l,m) are defined by f̂(l,m)= h f, Ylm iand the
L2-norm of Ylm is given by:

jjYm
l jj−2

2 =
4π

2l + 1
⋅ l + mð Þ!

l−mð Þ! : ð6Þ

It is possible to solve this system directly by finding the coefficients
first, but a more efficient approach is to use a divide-and-conquer
scheme (Healy et al., 1996).

These coefficients can then be low-pass filtered, such that only
lower frequencies have non-zero values, and passed through an inverse
transform to produce a surface reconstruction. For FD calculations,
ten reconstructions are produced using an upper l-value between 11
and 29.
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