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Processing pediatric neuroimaging data is a challenge due to pervasive
morphological changes that occur in the human brain during normal
development. This is of special relevance when reference data is used as
part of the processing approach, as in spatial normalization and tissue
segmentation. Current approaches construct reference data (tem-
plates) by averaging brain images from a control group of subjects, or
by creating custom templates from the group under study. In this
technical note, we describe a new, and generalized method of con-
structing such appropriate reference data by statistically analyzing a
large sample (n=404) of healthy children, as acquired during the NIH
MRI study of normal brain development.

After eliminating non-contributing demographic variables, we
modeled the effects of age (first, second, and third-order terms) and
gender, for each voxel in gray matter and white matter. By appropriate
weighting with the parameter estimates from these analyses, complete
tissue maps can be generated automatically from this database to
match a pediatric population selected for study. The algorithm is
implemented in the form of a toolbox for the SPM5 image data
processing suite, which we term Template-O-Matic. We compare the
performance of this approach with the current method of template
generation and discuss the implications of our approach.
© 2008 Elsevier Inc. All rights reserved.

Introduction

Magnetic resonance imaging (MRI) has become the imaging
method of choice for developmental neuroscience as it offers a
non-invasive window into the development of the human brain
(Schaer and Eliez, 2007; Wilke and Holland, in press). Despite the
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difficulties associated with scanning children (Byars et al., 2002),
numerous studies have now used MRI to describe normal and
abnormal brain development (Castellanos et al., 2002; Giedd et al.,
1996; Gogtay et al., 2004; Gothelf et al., 2007; Lenroot et al.,
2007; Peterson et al., 2003; Reiss et al., 1996; Schmithorst et al.,
2005; Wilke and Holland, 2003; Wilke et al., 2003b).

However, processing of MR images from children poses
distinct problems because several steps in image post-processing
require implicit or explicit use of reference data derived from
adults. For example, routine procedures like tissue segmentation or
spatial normalization, if based on adult reference data, have the
potential of introducing a severe bias into pediatric imaging data
(Hoeksma et al., 2005; Machilsen et al., 2007; Muzik et al., 2000;
Wilke et al., 2002, 2003a). Spatial normalization of pediatric
imaging data based on adult prior probability maps has been
suggested to be sufficiently accurate for coarse-resolution fMRI
data, following smoothing (Burgund et al., 2002; Kang et al.,
2003), but errors become increasingly important when using
structural or functional imaging data with a higher resolution. This
emphasizes the importance of using appropriate reference data
when processing pediatric imaging data, ideally based on a large
sample of subjects reflecting the characteristics of the population
under study (Good et al., 2001).

An average template created from a small number of reference
subjects may not capture enough variance in the template and may
also introduce bias. Acquiring normal, age-appropriate, pediatric
brain image reference data is difficult, costly and time consuming,
so it is not feasible for every pediatric brain imaging study to
construct its own template based on a large normative sample.
Until recently, pediatric brain image reference data from a large
control population was not readily available to those wishing to
construct a template matched to a given study population. This has
now changed with the completion of a large-scale MRI study of
normal brain development, conducted over several sites in the USA
(Evans et al., 2006). It would be straightforward to process this
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data as described before (Wilke et al., 2002, 2003a) and to generate
appropriate average templates from this normal database. However,
such an average template created from reference subjects will also
bring about unwanted effects, such as not capturing enough vari-
ance especially when only few subjects contribute to the template.

As an alternative to using static averages of individual
probability maps, here we propose a dynamic statistical approach.
This is implemented by analyzing the normal database and then
reconstructing appropriate reference data, not from the individual
datasets, but from a statistical model that estimates the influence of
all variables of interest on the tissue probabilities. For example, if the
influence of age is appropriately modeled within each voxel, this
information can then be used to construct a prototypical gray matter
map for any given age (within the range of available reference data).
This transcends previous approaches to provide pediatric (Wilke et al.,
2002; Wilke and Holland, 2003) or adult (Hill et al., 2002; Mazziota
et al., 1995, 2001) reference data as the influence of specific variables
of interest can be isolated and unwanted sources of variance can be
removed from the data. We believe this approach represents a
significant step forward for brain image data analysis in general and
for pediatric neuroimaging studies specifically, where it is imperative
to consider explicitly dynamic morphology to avoid biasing results.
With this technical note, we describe such an approach.

Methods and subjects

Subjects: origin of the data

Data used in the preparation of this article were obtained from the
Pediatric MRI Data Repository created by the NIH MRI Study of
Normal Brain Development. This multisite study of typically
developing children, from ages newborn through young adulthood
was conducted by the Brain Development Cooperative Group and
supported by the National Institute of Child Health and Human
Development, the National Institute on Drug Abuse, the National
Institute ofMental Health, and the National Institute of Neurological
Disorders and Stroke (Evans et al., 2006). We used data from ob-
jective 1, which included children from age about 5–18 years. MRI
data from objective 2 (newborns, infants, and toddlers; Almli et al.,
2007) was not yet publicly available at the time of the preparation of
this manuscript. Overall, imaging data from 432 subjects from
objective 1 was included; as data quality interfered with data pro-
cessing in 28 subjects (see below), a final 404 subjects were included
(see Table 1 for an overview of the age and gender distribution).

Identification of key demographic variables

As part of the NIH study on normal brain development, a
comprehensive neuropsychological assessment was completed by
all subjects, and numerous demographic variables were recorded
and are now made available to registered researchers (Evans et al.,
2006). In order to adequately capture and describe normal brain
development as attempted here, external variables known to
Table 1
Age and gender distribution of the overall sample

Ages
4–5.9

Ages
6–7.9

Ages
8–9.9

Ages
10–11.9

Ages
12–13.9

Ages
14–15.9

Ages
16–18.9

Total

Boys 19 41 31 22 30 21 28 192
Girls 19 51 31 41 23 20 27 212
influence brain development must be included in the statistical
model. At the same time, it is not meaningful to include variables
into such a model that do not substantially contribute to the model
(i.e., do not explain enough variance in the model; see below for
our procedure to identify such non-contributing variables), or that
are not likely to be available for inclusion by the user. From the
available demographic details on all subjects, we therefore decided
to identify candidate variables that i.) have been suggested to
significantly influence brain structure in the past; ii.) can be
defined unambiguously, and iii.) are likely to be available for
consideration in a model by the user of the algorithm.

To this effect, the following candidate variables were identified:
age (Castellanos et al., 2002; Giedd et al., 1996; Good et al., 2001;
Wilke et al., 2002), gender (Gogtay et al., 2004; Good et al., 2001;
Lenroot et al., 2007; Wilke et al., 2007), handedness (Amunts
et al., 1996; Hervé et al., 2006; Narr et al., 2007), and cognitive
abilities (Colom et al., 2006; Haier et al., 2004; Reiss et al., 1996;
Schmithorst et al., 2005; Thompson et al., 2001; Wilke et al.,
2003b). Age was measured in months at date of scan (due to the
rapid changes occurring during normal brain development, a
grading in years was considered too broad [Wilke et al., 2002,
2003a,b, 2007]; this is illustrated by a 6-year-old being “20%
older” than a 5-year-old, even if the difference may only be one
month). As the global effects of age on brain structure were found
to be highly non-linear (Castellanos et al., 2002; Giedd et al., 1996;
Lenroot et al., 2007; Peterson et al., 2003; Wilke et al., 2003b;
Wilke and Holland, in press), orthogonalized second- and third-
order expansions of age were also included in the exploratory
analyses. Gender was entered as a binary variable (female=0,
male=1). Handedness was assessed according to Almli, (1999)
and calculated here based on the number of right-handed trials (in
older children, N72 months [6 years]) or answers (in younger
children, b72 months), employing the approach also used in a
classical score of handedness (Oldfield, 1971). This yields a
lateralization index ranging from −1 (fully left) to +1 (fully right),
with − .2bLIb2 being considered bimanual. As a proxy for the level
of cognitive abilities influencing brain structure,maternal and paternal
education were used (see below for a discussion of our rationale).
Parental education was graded according to the following scale: “less
than 6th grade” (level 1); “less than high school” (level 2), “high
school” (level 3), “some college” (level 4), “college” (level 5), “some
graduate level” (level 6), or “graduate level” (level 7).

Testing for the influence of key demographic variables

The effect of the demographic variables was tested statistically:
all variables were included in a multiple regression model which
was run for two tissue classes (gray matter [GM] and white matter
[WM]). Cerebrospinal fluid (CSF) maps were generated but were
not statistically investigated for this manuscript as they very rarely
are of specific interest to researchers; moreover, CSF volume is
very low in children (Wilke et al., 2003a), making spurious
segmentation results more likely. The variance explained by each
factor can be determined by specifying an omnibus F-test, testing
for the effect of each variable. The sum of F-values for each effect
can then be expressed as the percentage of overall variance
explained by all factors.

As imaging data is commonly smoothed to increase the signal-
to-noise ratio (SNR) and to determine the spatial scale at which
changes are most sensitively detected (matched filter theorem;
Ashburner and Friston, 2000; Salmond et al., 2003; Jones et al.,
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2005), we decided to explore three different smoothing widths in
order to allow for a variable explaining variance differently on
different spatial scales (filter width FWHM [full width at half
maximum]=0, 6, and 12 mm). This results in six analyses (two
tissue classes by three smoothing widths each). The results from
these tests were then used to guide the selection of the variables
entering the final analysis in so far as a factor was only considered
if it explained more than 5% of the statistical variance in at least
half of the analyses conducted.

The following variables were not included for consideration in
the analyses as they did not meet the criteria laid out above; they
are reported here for the sake of completeness: subject ethnicity
(not Hispanic or latino: n=374; Hispanic or latino: 30); site location
(west: 126; midwest: 150; east: 128); overall household income ($0–
$5,000: n=1; $5,001–$10,000, n=2; $10,001–$15,000, n=4;
$15,001–$25,000, n=11; $25,001–$35,000, n=20; $35,001–
$50,000, n=76; $50,001–$75,000, n=97; $75,001–$100,000,
n=96; $100,001–$150,000, n=87; over $150,000, n=10).

MR-Imaging details

Children were imaged on 7 standard 1.5 T MR scanners (General
Electric Genesis Signa [4 scanners], n=278; Siemens Medical
Systems Sonata [1 scanner], n=72; Siemens Medical Systems Vision
[2 scanners], n=53; data not available for 1 subject), in each case
obtaining a whole-head T1-weighted 3D dataset with the following
parameters: TR=22–560 ms, median 24 ms (22 ms, n=4; 23 ms,
n=170; 24 ms, n=69, 25 ms, n=103; 500 ms, n=55; 566 ms,
n=1; data not available for 2 subjects); TE=8–14 ms, median 10 ms
(8 ms, n=32; 9 ms, n=55; 10 ms, n=221, 11 ms, n=70; 12 ms,
n=23; 14ms, n=1; data not available for 2 subjects), pulse angle=30–
90 ° (30 °, n=346, 90 °, n=56; data not available for 2 subjects),
matrix=[224–256]×[46–256]×[124–256], median 256×256×124,
voxel volume .97–3.09 mm 3, median 1.32 mm 3 (b1 mm 3, n=3; 1–
1.5 mm 3, n=339; 1.5–2.5 mm 3, n=6; 2.5–3.5 mm 3, n=56).

Imaging data pre-processing

All processing and analyses steps were done using functionality
available within the SPM5 software package (WellcomeDepartment
of Imaging Neuroscience, University College London, UK) or using
custom scripts and functions, all running within the Matlab
programming environment (The Mathworks, Natick, USA). The
high-resolution T1-datasets of all children were segmented using the
unified segmentation algorithm available within SPM5 (Ashburner
and Friston, 2005). However, in order to avoid introducing a
systematic bias into the segmentation routine by using the standard
adult reference data (Wilke et al., 2003a), we used a novel approach
that allows, within the unified segmentation framework, to disregard
the prior information maps and generate segmentation results based
on voxel intensity alone (Gaser et al. 2007). This approach has
already shown to be useful when handling MR imaging data from
infants (Altaye et al., 2007). In the current context, segmentation
without reliance on a priori tissue probability maps means that the
algorithm can operate on the source data independent of prior
datasets. It should be noted that the removal of the prior tissue
information makes the algorithm slightly less robust when
confronted with lower quality input data. To avoid spurious results,
all segmentation results were screened visually by one experienced
rater (MW), and the result was considered inadequate in 28 subjects
(6%).
A Hidden Markov Random Field (HMRF; Cuadra et al., 2005)
approach with a small prior probability weighting of 0.15 was used
to enforce a more consistent labeling of voxels. This approach
punishes isolated voxels which are unlikely to be member of a given
tissue type (for example, a voxel with a medium probability for GM
is more likely gray matter if all surrounding voxels are classified as
gray matter with a high probability). This is implemented by
calculating the MRF energy U26, from the 26 surrounding voxels
which aids in determining the probability of a given voxel to actually
belong to this tissue class.

Finally, a “light” cleaning procedure was used that removes
extracranial tissue; here, an iterative dilatation/erosion approach
within SPM5 is used to remove unconnected tissue voxels which are
not likely to be brain tissue. No additional manual skull stripping
was done.

In order to further avoid influence from adult reference data
during spatial normalization (Hoeksma et al., 2005; Machilsen
et al., 2007; Muzik et al., 2000; Wilke et al., 2002), we opted to use
an affine-only spatial normalization approach as the overall scaling
from this procedure has been shown not to correlate with age in
this age range, in contrast to the non-linear effects of spatial
normalization (Wilke et al., 2002). Moreover, while the use of non-
linear spatial normalization may result in a better overlap between
subjects (Ashburner and Friston, 1999), it will introduce a bias by
matching regional aspects in each image to a template image. This
effect is undesired when creating a template that is meant to retain
the regional features of the input sample. We decided against an
iterative approach to creating templates where, in subsequent
iterations, processing is based on their own average (Wilke et al.,
2003a), for two reasons: one, average templates tend to take up a
larger space within the bounding box (Thompson et al., 2000;
Wilke et al., 2003a), and two, such custom-tailored “child spaces”
would make the comparison with results from other imaging
studies even more difficult. Additionally, our processing approach
was optimized towards minimizing the influence of prior
probability maps during segmentation, implying that additional
processing iterations would not have improved results.

We developed an optimized affine normalization approach by
matching each cleaned native-space tissue map (GM,WM, and CSF)
to the respective (adult) normalized tissue map; this has the advantage
of using “clean” tissue maps as opposed to the unified segmentation
routine where the initial affine mapping is based on the whole head
(prior to bias correction and removal of extracranial tissue; Ashburner
and Friston, 2005). Consequently, using skull-stripped images has
only recently been shown to improve segmentation accuracy within
the unified segmentation framework (Acosta-Cabronero et al., 2008).
It is important to remember that, using this affine scaling, only the
global information from the priors is used, prohibiting an unwanted
regional matching of the pediatric tissue maps to the adult priors; this
scaling has been shown not to correlate with age (Wilke et al., 2002).
The final normalization parameters were then obtained by averaging
the three affine transformations from each subject. For this, the
parameters for the different tissue maps were weighted as the results
from the normalization of CSF must be considered to be less optimal
due to the lower volumeofCSF in children, andGMmust be expected
to yield a better fit due to the more distinct structure. Therefore, GM
contributed 50%, WM 30%, and CSF 20% to the final set of
parameters, resulting in an optimized canonical affine transformation
matrixwhichwas applied to all threemaps. Imageswerewritten out to
the “template” bounding box of SPM (182×218×182 voxels) at
1×1×1 mm resolution.



Table 2
Demographic details of the four randomly drawn subsamples used for
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Implementation of the algorithm

The functions of the algorithm were divided into two parts:
1) regression of the reference sample (source population), and
2) template creation for the target population. These steps were
separately applied to each of the tissue classes. For the first part, we
used a multiple regression model, where each column of the design
matrix X is represented by one (demographic) variable. As a result,
we can statistically isolate and describe the influence of these crucial
variables on structural brain development. As we found that only a
few variables significantly explained variance in our model (see
below) we restricted the regression to a limited number of variables:
for our final analyses, we used age and gender because these
variables explained the largest part of the variance in our data. Age
was modeled as polynomial regression with up to third order terms;
the different age terms were orthogonalized with regard to its
preceding column. In order to estimate the parameters of our model
we used the well-known equation of the general linear model

Y ¼ Xbþ e

Here, the observed response variable Y is expressed in terms of
a linear combination of explanatory variables X and the error term
ɛ. The parameters from the source population were then estimated
(step 1) using a least squares approach with

b ¼ X�1Y

To create a new customized template in the second step (based on
the given characteristics of the target population), we again utilize
the general linear model. The estimated parameters β (obtained in the
above regression, step 1) are now weighted in step 2 by the given
value Xnew to obtain the new response variable Y, such that

Ynew ¼ Xnewb

Aswe apply this equation to each voxel individually, we can now
create new tissue maps with respect to any value in the new design
matrix (within the range of available values from the source
population, as determined in step 1). This new designmatrix consists
of the values of the three age terms and gender from the target
population for which the tissue map should be generated. For each
voxel, the linear combination of parameter estimates is then
determined and used to generate a final voxel value. This procedure
is repeated for the different tissue types and results in simulatedmaps
with regard to the estimated regression of the reference sample. The
whole algorithm was implemented in the form of a toolbox for
SPM5; due to the user-friendly and automated generation of
templates, we termed it Template-O-Matic (TOM).
performance testing

Age
range

Age Gender Scenario Age Gender

Girls Boys Girls Boys

Large
range

103.8±21.6 95 125 Small group
LR/SGa

102.5±
21.2

3 9

Large group
LR/LG

99.1±
20.9

30 18

Small
range

106.9±10.1 44 50 Small group
SR/SG

108.7±
9.7

3 9

Large group
SR/LGb

105.6±
10.1

26 22

Notes: a: scenario expected to produce the “worst” template; b: scenario
expected to produce the “best” template; see also Figs. 4–7.
Approaches to template creation

Two general approaches seem feasible to construct appropriate
reference data. First, the average age, gender, etc. is calculated based
on the supplied input information (i.e., the demographic variables
of the sample under study), and a fitting average template is
created accordingly. Here, we term this the “average approach”
(TOMaverage). Alternatively, the input sample could be completely
matched such that one reference tissue map is generated for each
input subject, and these matched reference maps would only be
averaged at the end. We term this the “matched pairs approach”
(TOMmatched pairs). Here, templates were created using both ap-
proaches, as well as using the “classical” way, by simply averaging
the tissue maps of the contributing subjects. Differences between the
approaches are investigated using a joint histogram, illustrating the
correlations between corresponding voxel values between two
images (identical images would yield a straight diagonal line; each
deviation from this line indicates discordance between the input
images).

Scenarios

In order to compare the performance of the new algorithm
suggested here with the current standard (using a custom-made
pediatric template made up from the contributing subjects), we
investigated four different scenarios. Group size (more subjects
capture more variance) and age range (a smaller range means less
variance) would seem to be most important when assessing the
performance of pediatric brain image reference data so we tested the
following scenarios: a small sample (n=12, a typical scenario just
sufficient for a random-effects study of functional MRI data; Friston
et al., 1999; Thirion et al., 2007), and a larger sample (n=48,
typically aimed at investigating structural group differences; Roja
et al., 2006; Campbell et al., 2006). Both samples were investigated
simulating either a small (36 months) or a large age range
(72 months), resulting in four scenarios: large range/small group
(LR/SG), large range/large group (LR/LG), small range/small group
(SR/SG), small range/large group (SR/LG; see Table 2). Among
these scenarios, the group with the small age range and the large
group (SR/LG) would be expected to yield the “best” template,
while the small group with the large age range (LR/SG) would be
expected to yield the “worst” classical template. Both age ranges
were centered at 108 months (9 years) of age, as most children are
amenable to an MR-examination by that age (Byars et al., 2002).
This results in age ranges of 108±18 and 108±36 months. Within
these ranges, 94 and 220 subjects, respectively, could potentially be
included, and the finally contributing 12 or 48 subjects were selected
at random, using functionality available within Matlab.

Results

Demographic details

Of the 404 children that were included, the mean age was
128.24±46.49 months at the date of scan (range, 57–223 months
[4.75–18.58 years]); there were 192 boys (47.5%) and 212 girls



Fig. 1. Variance explained by the included demographic variables; 0 (front row), 6 (middle row), and 12 mm FWHMGaussian smoothing filter (back row). See
also Table 3.
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(52.5%), see also Table 1. Right-handedness was present in 360
children; 37 children were considered left-handed, while 5 children
were considered bimanual. Data was lacking for 2 children. Par-
ental education was level 1 in n=0/1 (maternal/paternal), level 2 in
n=4/9, level 3 in n=52/81, level 4 in n=123/108, level 5 in
n=132/107, level 6 in n=21/17, and level 7 in n=70/79. No
Information (level 0) was available for n=2/2 parents. None of the
variables correlated significantly with any other variable, with the
exception of maternal and paternal education which correlated
strongly (r=.48, pb0.001).

Influence of demographic variables

For both tissue types (GM, WM) and all smoothing widths (0,
6, 12 mm FWHM), age (1st order term) dominated the amount of
explained variance. This trend became more apparent with the
increase in SNR and spatial scale (see Fig. 1 and Table 3). Of the
other variables, the second and third order expansions of age and
gender also fulfilled the inclusion criteria. Neither handedness nor
maternal or paternal education explained more than 5% of the
variance in at least half of the analyses; both variables were thus
omitted from all further analyses.

Comparison of new approaches to template creation

Both approaches (TOMaverage and TOMmatched pairs) yielded
visually indistinguishable, high-quality templates for all scenarios.
When comparing the two approaches for the two extreme scenarios
Table 3
Percentage of explained variance per retained demographic variable, for
each smoothing width and both tissue classes

FWHM=0 FWHM=6 FWHM=12

GM WM GM WM GM WM

Age (1st order term) 39.3 35.1 70 62.6 82.5 76.6
Age (2nd order term) 12.1 11.7 8.2 7.5 6.3 4.7
Age (3rd order term) 9.4 10.7 3.3 5.4 1.4 3.1
Gender 13.1 13.5 9.3 11.2 5.9 8.5

See also Fig. 1.
(LR/SG and SR/LG), it was apparent that the differences between
them are minimal (Fig. 2). There was better agreement when a
larger group from a smaller range was under study (Fig. 2, right
panels). For conceptual reasons (see discussion section), we chose
to use the TOMmatched pairs approach for further comparisons.

Comparison of classical versus matched pairs approach

A direct comparison of the LR/SG classical gray matter template
with the corresponding TOMmatched pairs template is shown in Fig. 3.
When visually assessing the resulting classical templates from the
four groups (Figs. 4–7, left panels), it is immediately apparent that
the larger groups yield a more distinct classical template. In contrast
to this, the TOMmatched pairs template yielded very distinct tissue
maps already in the small group with the large age range (LR/SG,
Fig. 4, middle panels) for both GM and WM. When comparing the
classical with the new TOMmatched pairs approach, the differences are
substantial when smaller groups are assessed (LR/SG and SR/SG,
Figs. 4 and 6) and diminish when larger groups contribute to the
classical template (LR/LG and SR/LG, Figs. 5 and 7).

Discussion

In this work, we suggest that, as an alternative to custom
(pediatric) template creation by averaging the sample under study,
it is both feasible and advantageous to create matched reference
data based on the statistical evaluation of a large reference sample.

Influence of key demographic variables

The dominating effect of age on brain structure in this pediatric
sample was apparent over all analyses (see Fig. 1 and Table 3), and
the linear as well as the second- and third-order expansions of age
were therefore included in the model. This is in line with previous
studies investigating brain development (Castellanos et al., 2002;
Giedd et al., 1996; Good et al., 2001; Wilke et al., 2002). It seems
surprising that the non-linear terms did not account for more vari-
ance in this sample, but this can be explained by the orthogonaliza-
tion of these terms (they therefore only accounted for additional
variance not already accounted for by the linear term) and the fact



Fig. 3. Scenario large range, small group: Close-up comparison of central gray matter structure representation in templates generated in the classical way (right)
and using the toolbox with “matched pairs” approach (left).

Fig. 2. Comparison of approaches: 2D histogram of the voxel classifications in the templates generated using the toolbox with the “average” (y-axis) and the
“matched pairs” approach (x-axis), for the LR/SG (left panels) and the SR/LG scenario (right panels), for both GM (top panels) and white matter (bottom panels).
Note the excellent agreement, more so with increasing number of contributing subjects; also note the disagreement mainly for intermediate voxel probability
values, while very low (bottom left) and very high (top right) values correlate well.
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Fig. 4. Scenario large range, small group: Comparison of GM and WM templates generated in the classical way (left), and using the toolbox with the “matched
pairs” approach (middle). Note the much more distinct TOM tissue map and the large disagreement in voxel classification probability values between the
templates as shown by the wide spread in the histogram.
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that we only used a linear spatial normalization and did not inves-
tigate regional tissue volume, as suggested in so-called optimized
voxel-based morphometry studies (Good et al., 2001). The second-
Fig. 5. Scenario large range, large group: Comparison of GM and WM templates g
pairs” approach (middle). Note the increasing quality of the classical tissue maps an
to the increase in contributing subjects when compared with Fig. 4. Also note the
most important demographic variable was gender which also
explained a substantial amount of variance in all analyses (see
Fig. 1 and Table 3). Again, this was expected based on the published
enerated in the classical way (left), and using the toolbox with the “matched
d the diminishing disagreement in voxel classification probability values due
consistently higher TOM tissue map quality.



Fig. 6. Scenario small range, small group: Comparison of GM and WM templates generated in the classical way (left), and using the toolbox with the “matched
pairs” approach (middle). Note the more distinct classical tissue map due to the decrease in age range when compared to Fig. 4 but the still substantial
disagreement in voxel classification probability values as expressed by the wide spread in the histogram.
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body of data suggesting a clear influence of gender on brain structure
and size in children (Gogtay et al., 2004; Good et al., 2001; Lenroot
et al., 2007; Wilke et al., 2007).
Fig. 7. Scenario small range, large group: Comparison of GM and WM templates g
pairs” approach (left). Note the further increase in the classical template quality du
voxel classification probability values when compared with Fig. 6. Also note the
None of the other variables fulfilled our inclusion criteria,
including handedness: the explanatory power of this variable when
assessing brain structure was rather low in this sample. This is
enerated in the classical way (left), and using the toolbox with the “matched
e to the increasing number of subjects and the diminishing disagreement in
consistently higher TOM tissue map quality.
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somewhat surprising in so far as several studies described an
influence of handedness on brain structure (Amunts et al., 1996;
Hervé et al., 2006; Narr et al., 2007). However, even large voxel-
based studies also failed to find significant effects of handedness
(Good et al., 2001), suggesting that the influence of handedness may
not easily be captured using voxel-based approaches. As to the
method to assess handedness, the simple question “what hand do you
write with?” strongly correlated with the more extensive 10-item
scoring system (Almli, 1999) used here (r=.91). It is therefore
unlikely that other measures of handedness would explain enough of
the variance in the selected data to meet our threshold of 5%. For our
purposes here, handedness was therefore not considered.

As a proxy for the overall level of cognitive abilities, we used
paternal and maternal education instead of the individual subject’s
IQ. The reason for this was that IQ can be determined in many
different ways using a number of established tests, which i.) may not
be available to researchers outside of the US, and ii.) may show a
strong difference between populations, the reason of which is hotly
debated (Suzuki and Aronson, 2005). We therefore decided to use
parental education as a less ambiguous measure which also is more
likely to be available within another setting or country (Hauser,
1994); additionally, it is known to correlate with household income
(Goodman and Whitaker, 2002; White, 2000) which, in a recent
study, has been shown to predict neuropsychological test perfor-
mance in this specific sample (Waber et al., 2007). This correlation
of parental education with household income was also present in our
sample (r=.46 [maternal], r=.48 [paternal education]). Parental
education also has the advantage of being less dynamic than
household income (Goodman andWhitaker, 2002), and thus seemed
preferable in this setting. However, neither parameter explained
enough variance in our analyses to be retained in the final model.
Similar to handedness, while specific effects of this variable on brain
structure certainly are present (Colom et al., 2006; Haier et al., 2004;
Reiss et al., 1996; Schmithorst et al., 2005; Thompson et al., 2001;
Wilke et al., 2003b), they may be too regionally specific to influence
the whole-brain results assessed here. While both variables were
thus excluded from our analyses, there may well be scenarios where
the inclusion of either variable (or another variable of interest) may
be legitimate and indicated, for example when motor organization or
the correlates of cognitive abilities are under study. Our algorithm is
therefore set up to allow the inclusion of additional variables of
interest when assessing a reference population.

Comparison of approaches to template creation

As apparent from Fig. 2, both approaches to template creation
implemented here (TOM average and TOM matched pairs) work well in
that they create very similar templates which are of visually high
quality (Figs. 3–7). However, it should be noted that due to the large
database, the scenarios all were still rather balanced, as also apparent
from Table 3; in the case of an imbalanced reference samples (i.e.,
older boys and one younger girl), a simple average approach would
do injustice to the outlier, which may or may not be a desired effect:
it could be argued that the template should capture only the defining
characteristics of the input sample, but it could also be argued that
the whole variance of the input sample should be present in the
template.We believe that the latter will be preferable in most settings
and that the TOMmatched pairs approach might therefore be more
suited to provide for such a uniform representation of the input
sample in the resulting template. Consequently, we chose to use this
approach here. However, as an argument can be made for both
approaches, they both are implemented in the final version of the
Template-O-Matic toolbox.

Performance of the new approach

When comparing the classical with the new approach to template
generation, it is immediately apparent that, especially in the sce-
narios with a smaller number of subjects, the resulting classical
templates are of lower quality when compared with the auto-
matically-generated TOM templates (Figs. 3–4 and 6). The larger
samples result in classical templates of clearly higher quality,
showing the positive effect of increasing the contributing sample
sizes (Figs. 5 and 7). It is remarkable that this results in a lesser
deviation from the automatically-generated templates, as apparent in
the higher agreement between the classical and the TOM templates
(Figs. 5 and 7, left panels). This implies that the better quality of the
larger-group classical templates approaches the quality of the TOM
templates, suggesting that these may be considered a new gold
standard, especially with smaller samples.

It will be interesting to compare the performance of our
algorithm to the results from a recently proposed enhancement to
the classical processing stream (Ashburner, 2007), suggesting an
iterative alternative to the current straight averaging approach used
for comparison here. By repeatedly matching all images using a
non-linear, diffeomorphic image registration scheme and updating
the resulting average image after each iteration, a much more
distinct average image is achieved (Ashburner, 2007). However,
this procedure still does not address the issues of a small sample
size, unwanted variance and the potential bias the unified
segmentation routine (using priors) does inject into the processing.
Consequently, we believe that there will still be advantages of our
algorithm even when the “classical” processing stream is
optimized. Should the proposed unbiased approaches to evaluate
the accuracy of non-rigid image registration schemes (Christensen
et al., 2006) be extended to include pediatric data, it would also be
very interesting to assess the impact of using the TOM-constructed
maps for spatial normalization as opposed to using the standard
adult maps. We hypothesize that the previously-shown bias when
using adult data (Wilke et al., 2002, 2003a) may be avoided when
custom-made pediatric reference data is used which at the same
time provide a more distinct target for nonlinear matching. Further
studies are necessary to directly assess performance of TOM
reference data under such conditions.

Overall, we believe that the approach taken here, namely to
statistically capture the relevant variance of key demographic
variables in a large reference sample, represents a critical step
forward when constructing reference data. The positive effects of this
approach should be most visible in samples that clearly deviate from
the “standard samples” that the processing algorithms have been
designed upon, namely young and healthyCaucasians as in the case of
the MNI standard brain templates (Mazziotta et al., 1995, 2001). The
larger the deviation from this standard, the more the sample will
benefit from customized priors; this is true for children (Muzik et al.,
2000;Wilke et al., 2002, 2003a) butmust also be expected for samples
representing the other end of the age spectrum, as in studies inves-
tigating healthy aging (Smith et al., 2007), mild cognitive impairment
(Sandstrom et al., 2006), or Alzheimer’s disease (Ishii et al., 2001).
Also, with higher resolution and improved processing algorithms, the
sensitivity to detect group effects must also be expected to increase
substantially, and approaches that were considered “good enough” for
a coarse spatial resolution may not be adequate anymore for higher-
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resolution data. The number of applications where an unbiased
template generation is of value must therefore be expected to increase
in the future.

Possible limitations of this study

It must be noted that themain limitation of this study is the fact that
not all subjects were imaged at one site with an identical imaging
protocol. Several sites contributed, and the imaging parameters,
although very similar, still slightly deviated between sites, and
different scanners, as a matter of course, cannot be expected to yield
identical images even with identical imaging protocols. Also, not all
potentially contributing sources of variance were even included in the
initial model (e.g., the result of several neuropsychological test
batteries) as they were unlikely to be available to the user of the
toolbox and would therefore not be modeled. Likewise, ethnicity or
racewere not considered; although custompriors have been suggested
for subjects from a different ethnic background (Lee et al., 2005), we
believe that not enough subjects from these backgrounds were
included in the sample to allow for this sufficient isolation of the
influence of such factors on brain structure. Still, this dataset, due to its
size, data quality, and detailed demographic description, is uniquely
suited to address the question at hand, and we believe that the main
contributing factors have been accurately identified.

Conclusions

Our algorithm allows for the statistical description and
modeling of key demographic variables; it yields high-quality
tissue maps, matched to the individual input sample. It may be
particularly beneficial when smaller groups are investigated as the
quality of templates created from such small groups is low. We
therefore believe that the Template-O-Matic is a significant
improvement over current approaches, allowing for a customized
reference data generation and thus aiding in image data processing
of “unusual samples”, like children or elderly subjects.
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