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Abstract

Background/Objectives: Early and accurate prediction of stroke severity is crucial for opti-
mizing guided therapeutic decisions and improving outcomes. This study investigates the
predictive value of lesion size and functional connectivity for neurological deficits, assessed
by the National Institutes of Health Stroke Scale (NIHSS score), in patients with acute or
subacute subcortical ischemic stroke. Methods: Forty-four patients (mean age: 68.11 years,
23 male, and admission NIHSS score 4.30 points) underwent high-resolution anatomical
and resting-state functional Magnetic Resonance Imaging (rs-fMRI) within seven days
of stroke onset. Lesion size was volumetrically quantified, while functional connectivity
within the motor, default mode, and frontoparietal networks was analyzed using seed-
based correlation methods. Multiple linear regression and cross-validation were applied
to develop predictive models for stroke severity. Results: Our results showed that lesion
size explained 48% of the variance in NIHSS scores (R2 = 0.48, cross-validated R2 = 0.49).
Functional connectivity metrics alone were less predictive but enhanced model perfor-
mance when combined with lesion size (achieving an R2 = 0.71, cross-validated R2 = 0.73).
Additionally, left hemisphere connectivity features were particularly informative, as models
based on left-hemispheric connectivity outperformed those using right-hemispheric or
bilateral predictors. This suggests that the inclusion of contralateral hemisphere data did
not enhance, and in some configurations, slightly reduced, model performance—potentially
due to lateralized functional organization and lesion distribution in our cohort. Conclusions:
The findings highlight lesion size as a reliable early marker of stroke severity and under-
score the complementary value of functional connectivity analysis. Integrating rs-fMRI into
clinical stroke imaging protocols offers a potential approach for refining prognostic models.
Future research efforts should prioritize establishing this approach in larger cohorts and
analyzing additional biomarkers to improve predictive models, advancing personalized
therapeutic strategies for stroke management.
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1. Introduction
Around 12 million humans worldwide are diagnosed with stroke every year, with a

global prevalence of around 100 million people affected [1]. Current estimations predict
a further rise in stroke prevalence of 27% by 2047 due to the aging society and increased
survival ratio despite better stroke prevention [2]. Therefore, stroke-associated mortality
and morbidity remain high in spite of improved treatment options [3]. The risk–benefit
assessment of therapeutic interventions in the acute phase is particularly challenging.
Especially intravenous thrombolysis and mechanical thrombectomy show great promise
but require careful evaluation [4]. Enhancing therapeutic efficacy necessitates a deeper
understanding of the complex neural interactions underlying sensorimotor functions,
which advanced neuroimaging techniques can improve. All therapeutic interventions aim
to salvage or preserve brain tissue, achieving corresponding improvements in functional
outcomes. In this context, it is crucial to derive prognostic information regarding expected
clinical deficits from structural lesions. An ischemic stroke manifests as localized damage,
but the clinical presentation often encompasses a broader array of symptoms. These deficits
may result not only from the ischemic lesion itself but also from indirectly affected areas.

The analysis of neuroimaging data plays a crucial role in assessing both the localized
and secondary indirect effects of post-stroke conditions and in developing predictive mod-
els for patient outcomes. Previous work has focused on various parameters obtained from
different types of data [5,6]. In this context, lesion size has been suggested as a prognostic
indicator, admittedly with limitations, such as moderate correlation results or reflections
on contemporary relevance [7,8]. Particularly through diffusion-weighted imaging (DWI)-
based inference regarding both lesion size and patient outcome, significant insights have
been gained [9–11]. Lesion size is also an essential reference for evaluating the predictive
value of innovative parameters such as corticospinal lesion load [12]. In addition to its
use as a reference metric, structural and functional disconnection in systematic evalua-
tions show considerable potential [13]. Alongside prognostic factors from neuroimaging,
blood-based and cerebrospinal fluid biomarkers can provide additional information for
predicting outcomes in ischemic stroke [14,15]. However, despite all endeavors, previous
analyses utilizing diverse data types to create outcome prediction models have not reached
a clinically applicable level of accuracy.

Moreover, network connectivity analysis has become established in this field. Besides
analyzing structural connectivity, which describes anatomical connections between brain
areas, investigating functional connectivity is particularly interesting. For data acquisition,
resting-state functional Magnetic Resonance Imaging (rs-fMRI) and diffusion tensor imag-
ing (DTI) are not components of routine acute stroke diagnostics. Both can be applied in
the acute or chronic stroke phase. Rs-fMRI provides a way to examine the brain’s natural
activity by tracking variations in the Blood Oxygenation Level Dependent (BOLD) signal.
This technique helps to identify various brain networks, known as Resting State Networks
(RSNs). The first rs-fMRI network analysis demonstrated a high functional correlation
between the motor cortex of the left and right hemispheres [16,17]. Further stroke studies
concentrating on motor deficits have reported a modified intra- and interhemispheric
connectivity between motor areas [18–22].

In recent years, machine learning (ML) techniques have gained substantial traction
in stroke imaging research, enabling the development of predictive models from high-
dimensional Magnetic Resonance Imaging (MRI) data. Approaches such as lesion-symptom
mapping, diffusion-weighted imaging (DWI) analysis, and resting-state functional MRI
(rs-fMRI) have been analyzed using both classical and advanced ML algorithms [23–26].
Functional MRI is widely used due to its high spatial resolution, making it a preferred
method for localizing brain activity and identifying network-level dysfunctions. Support
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vector machines, random forests, and convolutional neural networks have demonstrated
their potential in modeling complex relationships between imaging features and clinical
outcomes [27,28]. At the same time, regression-based methods remain essential tools,
particularly in settings with moderate sample sizes. Techniques such as multiple linear
regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and ridge
regression offer high interpretability and allow for the systematic assessment of predictor
importance while controlling for overfitting through cross-validation [29,30]. These meth-
ods have been successfully applied to functional and structural imaging data, forming a
robust framework for the construction and validation of prognostic models. Our study
builds upon this foundation by applying multiple linear regression and cross-validation to
evaluate the predictive contribution of lesion size and network-level connectivity metrics
in acute stroke.

In the acute stroke setting, a variety of neuroimaging and neurophysiological tools—
such as electroencephalography (EEG), evoked potentials (EPs), and ultrasound dopplerog-
raphy (USDG)—are employed to assess brain structure and function [31–33]. FMRI, in
combination with structural MRI, offers high spatial resolution, enabling the precise lo-
calization of lesions and the assessment of functional connectivity changes. However, its
temporal resolution is limited by the hemodynamic response, which evolves over sev-
eral seconds. In contrast, electrophysiological methods such as EEG and EPs provide
millisecond-level temporal resolution and are routinely used in intensive care units for the
real-time monitoring of brain function [31,32]. Transcranial USDG offers another comple-
mentary approach by assessing cerebral blood flow dynamics [33]. While these modalities
are well-suited for continuous bedside monitoring, they lack the spatial specificity and
whole-brain coverage provided by MRI and fMRI. In this study, we focus on the combined
use of structural and functional MRI to examine how lesion size and connectivity alterations
contribute to acute stroke severity.

Nevertheless, most research has focused on examining functional connectivity in
the long-term progression following stroke, leading to a lack of studies in the acute
setting [34,35]. We compare this research project’s neuroimaging parameters and clin-
ical data during the acute stroke phase among the predominant reports investigating
functional connectivity in the chronic phase post-stroke. In this regard, our objective was to
analyze whether existing parameters such as lesion size and functional connectivity could
serve as early markers of stroke severity. Another purpose was to investigate whether
incorporating information on functional connectivity improves the accuracy of predicting
stroke severity in the acute stage. Our primary hypothesis suggests that stroke-related
reductions in sensorimotor RSN connectivity correlate more strongly with patients’ neu-
rological deficits, as measured by the National Institutes of Health Stroke Scale (NIHSS
score), compared to the traditional parameter of lesion size. To test this hypothesis, we
analyzed the anatomical and functional MRI data of a cohort of 44 patients with acute or
subacute subcortical ischemic stroke.

2. Materials and Methods
Utilizing various imaging modalities, this study analyzed clinical and imaging data

from stroke patients. Standard preprocessing was used to ensure consistency across the data.
Key variables, including clinical scores, lesion metrics, and functional connectivity, were
measured and statistically analyzed to determine their correlations and predictive values.

2.1. Patient Cohort

Forty-four stroke patients (aged 47 to 86 years, mean age 68.11 years; 23 male; and
19 right and 25 left hemispheric strokes) were retrospectively enrolled in this study. All
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stroke patients were treated acutely in the Department of Neurology, University Hospital
Jena, Germany. Upon presentation to the Emergency Department and the acute man-
agement of stroke, patients were admitted to our certified stroke unit or neurologically
managed intensive care unit. They subsequently received interdisciplinary stroke unit
care for a minimum duration of 24 h and were treated according to standardized clinical
guidelines [36]. The stroke patients were recruited from the stroke unit and intensive
care unit of the University Hospital Jena. A consistent and standardized examination
protocol with comprehensive clinical evaluations and medical history reviews was applied
to all patients.

The study established the following inclusion criteria for patient selection: (a) acute
or subacute single subcortical ischemic stroke located in the anterior, media, or posterior
cerebral territories, confirmed by cranial MRI conducted within seven days after stroke and
as part of routine clinical practice, (b) no pre-infarction in the same cerebral area, (c) focal
neurological symptoms attributable to the ischemic stroke, which include motoric and/or
sensory deficits, (d) baseline NIHSS score at the time of admission below 15 points to
ensure the inclusion of patients with mild to moderate stroke severity, (e) age of 18 years
or older, and (f) no indication of any other neurological diseases that could account for
the observed symptoms, assuring that the deficits are solely due to the ischemic stroke.
These inclusion criteria were used to create a homogeneous study population to enable a
standardized analysis and the basic applicability of the approach presented.

The patients had experienced mild or moderate strokes, as determined by an NIHSS
score of less than 15 points. Specifically, mild strokes were categorized by an NIHSS score
ranging from 0 to 6 points, while moderate strokes were indicated by scores ranging from 7
to 14 points. Including patients with an NIHSS score under 15 points at admission was a
strategic decision based on several considerations. Firstly, we targeted patients with mild to
moderate stroke severity to ensure feasibility for practical participation. Severely affected
patients often experience complicated clinical courses, including prolonged intensive care
stays, which could hinder consistent study participation. Secondly, this selection criterion
aimed to create a more homogeneous cohort, reducing variability caused by extreme stroke
severity and allowing a more explicit analysis of functional impacts.

Alongside gathering sociodemographic data, we meticulously collected a range of
parameters and clinical information. This included long-term medication regimens, such
as (dual) platelet aggregation inhibition and anticoagulation therapy. Acute therapeu-
tic measures were also documented, encompassing systemic thrombolysis, mechanical
thrombectomy, and acute thrombendarteriectomy of the carotid artery. Furthermore, the
duration of hospitalization was systematically recorded to provide an overview of each
patient’s clinical course.

Exclusion criteria were acute visual disturbances (such as hemianopsia), pre-existing
motor or sensory deficits resulting from a prior stroke in the same cerebral area, and
contraindications for MRI examination, like the presence of non-MRI-compatible implants
or incompatibility with gadolinium-containing contrast media.

The patient cohort’s comprehensive demographic and clinical features are delineated
in Table 1.

All patients underwent cerebral high-resolution 3 Tesla MRI, which revealed imaging
evidence of acute or subacute ischemic stroke. In detail, the anatomical and functional
MRI of the patients were obtained, including T1- and T2-weighted imaging data and
conventional rs-fMRI. Morphological imaging findings (affected brain side and location of
ischemic lesions) were collected from the datasets.
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Table 1. Demographic and clinical features of the patient cohort including National Institutes
of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS). Values are presented as the
mean ± standard deviation (SD) and median with range in parentheses.

N 44

Age (in years) 68.11 ± 10.2 (68.50, 47–86)
Sex female/male (in %) 21/23 (47.73/52.27%)

NIHSS score at admission 4.30 ± 3.35 (3.00, 0–14)
NIHSS score at 24 h (early follow-up) 2.86 ± 2.60 (2.00, 0–14)

NIHSS score at discharge 1.84 ± 2.17 (1.00, 0–10, n = 43)
mRS pre-stroke level 0.44 ± 0.84 (0.00, 0–3, n = 41)

mRS at discharge 1.73 ± 1.18 (1.50, 0–4, n = 40)
Affected hemisphere right/left (in %) 19/25 (43.18%/56.82%)

Premedication

Platelet aggregation inhibition (single or dual; in %) 11 (25.00%)
Oral anticoagulation (in %) 2 (4.55%)

Acute treatment intervention

Systemic thrombolysis (external or in-house, in %) 10 (22.73%)
Mechanical thrombectomy (in %) 4 (9.10%)

Both (thrombolysis and thrombectomy) 3 (6.82%)
Acute carotid artery thrombendarteriectomy (in %) 0 (0.00%)

Duration of hospitalization in days 6.64 ± 2.84 (6.00, 2–14)

To provide a detailed overview of the lesion distribution and stroke etiology within
the cohort, Table 2 summarizes the affected anatomical regions as well as the classification
of stroke subtypes. The categorization was made according to the criteria of the classifi-
cation system from the Trial of Org 10172 in Acute Stroke Treatment (TOAST): (1) large
artery atherosclerosis, (2) cardioembolism, (3) small vessel occlusion, (4) stroke of other
determined etiology, or (5) stroke of undetermined etiology [37]. Ischemic lesions most
commonly involved the basal ganglia, followed by the thalamus and periventricular white
matter. Etiologically, strokes were predominantly cardioembolic or cryptogenic, with
smaller proportions attributed to microangiopathic and macroangiopathic origins.

Table 2. Anatomical and etiological characteristics of the stroke cohort. (Trial of Org 10172 in Acute
Stroke Treatment (TOAST)).

N 44

Anatomical region

Basal ganglia 28 (63.63%)
Thalamus 7 (15.90%)

Centrum semiovale and periventricular regions 5 (11.37%)
Other (e.g., hand knob, hippocampus) 4 (9.10%)

Etiological subtype (TOAST classification)

Cardioembolic 14 (31.82%)
Cryptogenic 12 (27.27%)

Microangiopathic 11 (25.00%)
Macroangiopathic 7 (15.91%)

In total, we analyzed data collected between December 2019 and November 2021.
The Ethics Committee of Friedrich Schiller University Jena reviewed and approved

the study, ensuring compliance with the principles of the Declaration of Helsinki.
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2.2. Clinical Appraisal

The stroke patients received a neurological examination including the NIHSS score
and the modified Rankin Scale (mRS). Both evaluation procedures were documented in
the acute phase as well as the follow-up. Neurological impairments were assessed and
quantified using the NIHSS score, a standardized scoring system generally considered
appropriate for assessing stroke severity [38]. This score can be used effectively for the initial
assessment and longitudinal monitoring of stroke-related deficits. Patients’ NIHSS scores
were systematically collected by trained neurologists, including residents and specialists,
to ensure consistency and accuracy in the assessment. The mRS, currently used extensively
in its widely accepted modification, is a measure for assessing the level of disability post-
stroke [39]. It was used to evaluate the overall degree of impairment due to stroke and
represents a more general assessment, possibly influenced by other factors, including
clinical and demographic variables.

2.3. MRI Acquisition

All patients in the research project underwent cerebral MRI scans including anatomical
and functional MRI data. The MRI examinations were performed using a 3 Tesla MRI
scanner (Skyra, SIEMENS, Erlangen, Germany), conducted within a window of seven
days following the patients’ admission to the hospital, with the mean interval being
2.48 days (±1.81 SD, median 2.00, range: 0–6). A standardized MRI protocol was uniformly
applied across all subjects, ensuring consistency and reliability of the imaging data. This
imaging protocol incorporated a high-resolution T1-weighted dataset with an isotropic
voxel size of 1 mm (millimeter) and a T2-weighted fluid-attenuated inversion recovery
(FLAIR) sequence [40] that maintained identical spatial resolution. The T1-weighted
anatomical images were obtained using a three-dimensional (3D) magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) sequence [41], with the following settings:
voxel size 1 mm isotropic, number of sagittal slices: 176, slice thickness 1 mm, repetition
time (TR) 2300 milliseconds (ms), echo time (TE) 306 ms, and inversion time (TI) 1100 ms.
Analogously, the FLAIR sequence was acquired using the following parameters: voxel
size 1 mm isotropic, number of sagittal slices: 176, slice thickness 1 mm, TR = 5000 ms,
TE = 394 ms, and TI = 1800 ms. Alongside anatomical MRI datasets, all patients received
fMRI scans using an echo-planar imaging (EPI) sequence during resting-state (task-free
period) with the following settings: number of images: 260, slice thickness 2.3 mm, TR
1780 ms, TE 30 ms, flip angle (FA) 90, and percent phase field of view (FOV) 100. The
rs-fMRI sequence used in our study had a pure acquisition time of 7.57 min. During the
scanning process, the patients were instructed to remain motionless with their eyes closed,
while staying alert. They were supposed to avoid focusing on any specific thoughts. To
prevent motion artifacts, several preventive measures were applied, including physical
stabilization of the head using foam cushions and head fixation devices, complemented by
patient instruction and calming measures.

2.4. Image Processing and Data Evaluation

The initial raw datasets comprised structural and functional MRI data. Upon acquisi-
tion, all MRI images underwent a meticulous and comprehensive preprocessing pipeline.
Figure 1 provides a general insight into the procedure.
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Figure 1. Schematic overview of the analysis framework. The procedure includes acquiring clinical
and imaging data of stroke patients, processing anatomical and functional images to determine lesion
size and functional connectivity, and investigating the predictive value of these parameters for the
clinical status after stroke.

2.4.1. Structural MRI Preprocessing

The preprocessing was executed using neuroimaging software tools: Statistical Para-
metric Mapping (SPM12) [42] and the Computational Anatomy Toolbox (CAT12) [43].
Integrating these tools for preprocessing facilitated the accurate detection and analysis of
ischemic lesions within the FLAIR images. The detailed preprocessing process ensured
the datasets were precisely prepared, allowing for the high-resolution and high-fidelity
analysis of anatomical and pathological features presented in the MRI images. By utilizing
SPM12 and CAT12, the study leveraged advanced image processing techniques to han-
dle the complexity of MRI data, ensuring that the resulting datasets were optimized for
subsequent statistical analyses and interpretations.

To ensure data quality and consistency, all T1-weighted images were visually in-
spected for motion artifacts and successful brain extraction. We utilized in-house software
under expert supervision to generate lesion masks from stroke patient images, combining
manual and automated approaches to ensure accuracy. Initially, MR images were labeled
according to their respective modalities and reoriented from sagittal to axial views. To
enable consistent normalization, the anterior commissure was marked, and in cases of
misalignment—particularly with oblique acquisitions—additional alignment steps were
performed. The axis along the falx cerebri was manually adjusted where necessary. Acute
ischemic lesions were then comprehensively identified and delineated on each FLAIR slice
through expert visual inspection. To support this process, automated lesion segmentation
was performed using the Lesion Segmentation Tool (LST) [44], which also enabled lesion
filling to improve normalization. Lesion masks and anatomical images were subsequently
co-registered using normalized mutual information in SPM12 and transformation into the
Montreal Neurological Institute (MNI)-defined standard space was achieved via CAT12.
All lesion masks underwent quality control by at least two trained raters at multiple pro-
cessing stages, with final lesion boundaries confirmed through comparison to the native
space and normalized anatomical images.

Following the creation of lesion masks, FLAIR images were co-registered to the T1-
weighted image using normalized mutual information in SPM12, and registration pa-
rameters were applied to the lesion masks. The LST was used to segment stroke lesions
accurately, and the lesions were filled in the T1 image to mitigate biases in spatial registra-
tion. This filled T1 image was transformed to the standardized MNI152NLin2009cAsym
space using CAT12, and the transformation was also applied to the co-registered stroke
lesion mask.
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The lesion size was quantified using volumetric calculation functions. The number of
voxels comprising the lesion was determined and multiplied by the voxel size (isotropic
voxel size of 1 mm). The calculated volume was expressed in cubic millimeters and exported
for subsequent analysis.

2.4.2. Preprocessing of rs-fMRI

The preprocessing of rs-fMRI data was performed using MATLAB 9.8.0.1323502
(R2020a) and SPM12. Raw data were assessed for artifacts and excessive head motion
(defined as >3 mm translation or >3◦ rotation), and subjects exceeding these thresholds
were excluded. Initially, motion correction was applied to compensate for displacements
arising from unavoidable movements during image acquisition. This was achieved by
realigning all images to the first image of the series, ensuring consistent spatial orientation.
Subsequently, the slice timing correction was applied. The process involved interpolating
the acquisition times of individual slices to a uniform time point. The fMRI data were
non-linearly co-registered to achieve higher spatial accuracy with the corresponding high-
resolution T1-weighted anatomical images. These T1-weighted images had previously
been segmented into cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM).
Normalization was then performed to transform the data into the standard space defined
by the Montreal Neurological Institute. Temporal filtering was applied to enhance signal
quality and reduce the impact of non-neuronal noise. Data were filtered between 0.01 and
0.1 Hz to minimize the influence of physiological noise and to focus on low-frequency
fluctuations indicative of functional connectivity. This frequency range is widely accepted
and has demonstrated robustness in both healthy individuals and patients with stroke
across multiple studies. Although no cohort-specific optimization of the frequency band
was performed, this standard range has been shown to reliably capture functionally relevant
BOLD signal fluctuations in similar clinical contexts. Further studies may evaluate whether
tailoring the frequency window could provide added value in acute stroke populations.
Finally, spatial smoothing was conducted using a 6 mm full-width at half-maximum
(FWHM) Gaussian kernel.

2.4.3. Functional Connectivity Network Analysis

Functional connectivity was analyzed using a seed-based correlation approach, a
well-established technique widely employed in numerous studies [17,45]. This method
involves selecting regions of interest (ROIs) and examining the correlation between the
average BOLD time series of voxels within each ROI and all other brain voxels. ROIs were
selected within the atlas based on a hypothesis-driven approach informed by anatomical
and functional considerations. This selection was guided by the prior literature on stroke
and reflects regions consistently identified as functionally relevant in task-based fMRI
studies of stroke patients, although no task-based data were available in the current cohort
for direct validation.

For further analysis, we focused on the motor network, the default mode network
(DMN), and the frontoparietal network. The anatomical delineation of regions was per-
formed using the AAL3 atlas, which provides the automated anatomical parcellation of
a spatially normalized high-resolution T1 volume [46]. This allowed us to map neural
networks in greater detail, enhancing our understanding of the functional organization of
the selected brain regions. Predefined networks were defined as sets of brain areas involved
in specific functions, and functional connectivity was assessed within these networks. The
following AAL3 atlas regions were used for network analysis:

• Motor Network I: Precentral Gyrus (PreCG), Postcentral Gyrus (PoCG, contributes to
sensorimotor integration), and Paracentral Lobule (PCL).
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• Motor Network II: Supplementary Motor Area (SMA), Superior Frontal Gyrus—
Dorsolateral (SFG), Middle Frontal Gyrus (MFG), and Inferior Frontal Gyrus—
Opercular Part (IFGoperc), Rolandic Operculum (ROL), and Superior Frontal Gyrus—
Medial (SFGmedial).

• Motor Network III: Insula (INS), Supracallosal Anterior Cingulate Cortex (ACCsup),
and Middle Cingulate Cortex (MCC).

• Motor Network IV: Putamen (PUT), Pallidum (PAL), and Caudate Nucleus (CAU).
• Default Mode Network (DMN): Medial Superior Frontal Gyrus (SFGmedial), Posterior

Cingulate Cortex (PCC), Subgenual Anterior Cingulate Cortex (ACCsub), Pregen-
ual Anterior Cingulate Cortex (ACCpre), Supragenual Anterior Cingulate Cortex
(ACCsup), Angular Gyrus (ANG), and Precuneus (PCUN).

• Frontoparietal Network: Middle Frontal Gyrus (MFG), Inferior Frontal Gyrus—
Opercular Part (IFGoperc), Inferior Frontal Gyrus—Triangular Part (IFGtriang), Angu-
lar Gyrus (ANG), and Inferior Parietal Gyrus (IPG).

Each ROI’s average BOLD time series was calculated to obtain its seed time series.
Intra-network connectivity was determined by calculating the correlations between each
pair of regions within the same network. These r-values were transformed to z-values
using Fisher’s Z-transformation, and the z-values were averaged to measure overall intra-
network connectivity.

Similarly, inter-network connectivity was estimated by calculating correlations be-
tween regions from different networks. These correlations were transformed to z-values
and averaged to produce an overall inter-network connectivity measure.

2.5. Statistical Analysis

The analysis was performed using multiple linear regression models to assess the
relationship between network connectivity metrics and clinical outcomes, measured by
NIHSS scores. Statistical modeling was conducted using Python 3.8.3, explicitly leveraging
the statsmodels and scikit-learn libraries to evaluate the predictive power of various sets
of predictors. Figure 2 illustrates the model selection process used to identify the best
connectivity predictor.

The following sections describe the statistical methodology in detail:

• Model Building and Evaluation: To evaluate the predictive capabilities of the different
connectivity features, multiple linear regression models were constructed incremen-
tally, with a maximum of five predictors per model to avoid overfitting. The initial
model was built using a single predictor, and additional predictors were added based
on the increment in R-squared, representing the proportion of the variance explained
by the model. Predictors that contributed the most significant increase in R-squared
were selected iteratively until the limit of five predictors was reached. The restriction to
five predictors was guided by the relatively small sample size (n = 44) and the widely
recommended rule of thumb requiring a minimum ratio of 10–15 observations per
predictor to ensure model stability and generalizability [47]. To ensure validity of the
linear regression assumptions, we additionally examined multicollinearity using the
Variance Inflation Factor (VIF), ensuring all VIF values remained below two. Normal-
ity of residuals was checked visually using Q–Q plots and tested via the Shapiro–Wilk
test, confirming approximate normality across models.

• Cross-Validation: To ensure that the model generalizes well to new data, a K-fold
cross-validation approach was employed. Specifically, a 5-fold cross-validation was
used, where the data was randomly partitioned into 5 equal-sized folds. For each
fold, the model was trained on four of the folds and tested on the remaining one. This
process was repeated five times, with each fold serving as the test set once, and the
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results were averaged to obtain the cross-validated R-squared and mean squared error
(MSE). The cross-validated R-squared provides an estimate of how well the model is
expected to perform on unseen data, mitigating the risks of overfitting.

• Model Metrics: For each model, key statistical metrics were computed, including the
R-squared, adjusted R-squared, Akaike Information Criterion (AIC), and Bayesian
Information Criterion (BIC). R-squared represents the proportion of variance in the
outcome variable explained by the model. Adjusted R-squared accounts for the num-
ber of predictors in the model, providing a more conservative estimate compared to
R-squared, especially for models with multiple predictors. AIC and BIC are measures
of model quality, with penalties for the number of predictors, used to compare models
and prevent overfitting.

• Incremental Predictor Selection: To identify the best set of predictors, two incremental
model selection approaches were employed: (1) models starting with lesion size as
the initial predictor, and (2) models without lesion size, focusing on connectivity
metrics. In the incremental approach, the predictor that led to the largest increase
in the model R-squared value was added iteratively until a total of five predictors
were included. Additionally, models were built separately for different hemispheres,
including left hemisphere predictors, right hemisphere predictors, and predictors from
both hemispheres, to explore the contributions of region-specific connectivity metrics.

• Model Comparisons: The performance of each model was assessed by comparing cross-
validated R-squared and MSE across different models. Cross-validation allowed for
an unbiased estimation of model performance on new data, while the use of different
subsets of predictors allowed for detailed insights into the relative importance of lesion
size versus connectivity-based predictors in explaining clinical outcome. In particular,
separate models were built to explore the predictive power of left hemisphere, right
hemisphere, and bilateral (both hemispheres) connectivity metrics, providing insights
into the specific contributions of different brain regions.

Figure 2. Model selection workflow for identifying the best connectivity predictor. Stepwise compar-
isons based on lesion size, connectivity metrics, and their combination.
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3. Results
Our study encompassed 44 patients in total, with 19 experiencing strokes in the right

hemisphere and 25 in the left hemisphere. Upon arrival at the Emergency Department, all
patients exhibited acute focal neurological symptoms. The average baseline NIHSS score
was 4.30 points (±3.35 SD, median 3.00, and range: 0–14), and the NIHSS score 24 h after
admission (early follow-up) was 2.86 points (±2.60 SD, median 2.00, and range: 0–14). At
the time of discharge, the NIHSS score was 1.84 points (±2.17 SD, median 1.00, range: 0–10,
and n = 43) and the mRS 1.73 (±1.18 SD, median 1.50, range: 0–4, and n = 40). The mean
duration of hospitalization was 6.64 days (±2.84 SD, median 6.00, and range: 2–14). The
distributions of NIHSS and mRS across the evaluated time points are presented in Figure 3.

(a) (b) 

Figure 3. Clinical patient trajectories with paired measurements and assessment intervals in two
panels: (a) National Institutes of Health Stroke Scale (NIHSS) at admission, early follow-up, and
discharge. The observed shift to lower NIHSS values across the time points indicates neurological
improvement within the cohort. (b) Modified Rankin Scale (mRS) pre-stroke and at discharge. The
plot captures the variability between individual patients at the measurement time points.

Resting-state functional connectivity was assessed for regions defined by the AAL3
atlas, comprising six functional networks. Connectivity estimates were obtained separately
for the left hemisphere, right hemisphere, and both hemispheres, resulting in 18 network
configurations. In total, 171 connectivity values (predictors) were calculated, including
intra-network and inter-network connectivity.

Initially, we tested the predictive power of lesion size versus each individual connec-
tivity predictor. This comparison aimed to determine whether single connectivity metrics
provided predictive accuracy comparable to lesion size.

To evaluate the predictive ability of lesion size and connectivity metrics, multiple
linear regression models were constructed and compared. A summary of the model metrics
for each approach is provided in Table 3, including R-squared, adjusted R-squared, AIC,
and BIC. Cross-validation metrics, such as cross-validated R-squared and MSE, were also
used to evaluate generalizability.

The model using lesion size only, which was treated as a continuous variable, explained
approximately 48% of the variance in NIHSS scores (R-squared = 0.48, cross-validated
R-squared = 0.49), indicating a moderate predictive ability. No binarization or stratification
of lesion size was applied, as continuous modeling preserves predictive information and
avoids arbitrary threshold effects. In contrast, the model using the connectivity metric
(bilateral primary motor vs. left basal ganglia motor) only had a lower R-squared value
of 0.21, suggesting that lesion size was a more robust single predictor of clinical outcome
compared to individual connectivity metrics.



Brain Sci. 2025, 15, 735 12 of 21

Table 3. Systematic overview of the comprehensive summary of model metrics for each approach
(Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and mean squared
error (MSE)).

Model Description R-Squared Adjusted
R-Squared AIC BIC Cross-Validated

R-Squared
Cross-

Validated MSE

Lesion Size Only 0.48 0.47 205.39 208.96 0.49 6.62
Best Connectivity Predictor

Only (bilateral primary motor
vs. left basal ganglia motor)

0.21 0.19 224.17 227.73 0.21 9.45

Best Predictors Without
Lesion Size 0.56 0.50 206.33 217.03 0.59 8.24

Best Predictors Including
Lesion Size 0.71 0.67 188.00 198.70 0.73 5.37

Best Predictors for Left
Hemisphere Only 0.54 0.48 207.74 218.45 0.57 8.28

Best Predictors for Right
Hemisphere Only 0.42 0.35 218.14 228.85 0.45 9.87

Best Predictors for Both
Hemispheres (D.) 0.48 0.41 213.69 224.40 0.52 10.75

When building incremental models without lesion size, the best set of predictors
achieved an R-squared of 0.56, with a cross-validated R-squared of 0.59. Including lesion
size as the first predictor resulted in a notably higher R-squared of 0.71 and a cross-validated
R-squared of 0.73, demonstrating the added predictive power of lesion size combined with
connectivity metrics.

Models built for specific hemispheres provided differential predictive performance.
The left hemisphere model showed the strongest fit among hemisphere-specific approaches,
achieving an R-squared of 0.54 (adjusted R2 = 0.48) and a mean cross-validated R2 of 0.57
(folds: 0.559, 0.564, 0.612, 0.572, and 0.543). This outperformed both the right hemisphere
model (R2 = 0.42, CV R2 = 0.45) and the bilateral model (R2 = 0.48, CV R2 = 0.52). A paired
t-test across cross-validation folds confirmed a statistically significant improvement for the
left hemisphere model compared to the right (p = 0.0016), and a smaller but still significant
difference compared to the bilateral model (p = 0.0454). AIC values further supported this
result: ∆AIC for the left vs. right hemisphere model was 10.40, and for the left vs. bilateral
model was 5.95, favoring the left hemisphere in both cases. Additionally, a likelihood ratio
test showed that extending the primary motor-only model with left-lateralized incremental
predictors resulted in a significantly better fit (χ2 = 24.42, df = 4, and p = 0.0001). These
findings indicate that left-lateralized functional connectivity, particularly within and across
motor and attention-related networks, is more strongly associated with acute NIHSS scores
than right-sided or interhemispheric features. This aligns with the known lateralization of
motor control and the dominance of the left hemisphere in skilled movement planning.

Overall, the findings indicate that lesion size is a strong predictor of NIHSS scores, and
combining lesion size with carefully selected connectivity metrics yields the best predictive
performance. Connectivity metrics alone, while informative, did not achieve the same level
of predictive accuracy as when lesion size was included.

To further contextualize these results and provide a visual representation of the un-
derlying data, Figure 4 presents representative MRI data from two patients with a left-
hemispheric subcortical ischemic lesion. Displayed are (a) anatomical sequences with
the lesion highlighted in red, (b) the corresponding connectivity maps, and (c) a multidi-
mensional depiction of the affected cortex. This was implemented exemplarily for one
patient with unilateral involvement and another with bilateral involvement. These cases
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are representative of the cohort and support the observed relationship between lesion size
and connectivity.

Figure 4. Representative MRI example from two patients with left-hemispheric subcortical ischemic
stroke. Top row: unilaterally affected patient 1; bottom row: bilaterally affected patient 2. (a,d) Origi-
nal FLAIR image with the outlined lesion in red. (b,e) Functional connectivity network originating
from the lesion. (c,f) Cortical regions affected by the lesion and its connectivity.

4. Discussion
The study demonstrates that lesion size robustly predicts NIHSS scores in the acute

stroke phase. Combining lesion size with strategically selected connectivity metrics en-
hances predictive performance. Although connectivity metrics provide valuable insights,
their predictive value does not match the effectiveness achieved when considering lesion
size. Consequently, this underscores the potential of compounding the classical parameter
lesion size with functional connectivity to predict the clinical status of acute stroke patients.

Our results add to the comprehensive discussion about the interaction between lesion
metrics and functional connectivity with clinical stroke severity. In the clinical setting,
determining lesion location and quantifying lesion size enable the primary assessment of the
extent of brain damage. A variety of studies identified lesion size as a prognostic indicator
of outcomes following acute ischemic stroke, with limitations [48–52]. Nevertheless, the
lesion size provides information for clinical decision-making, both for acute interventions
such as thrombolysis or thrombectomy and in the context of rehabilitation strategies, for
the evaluation of therapies, and for the clinical prognosis to set realistic expectations for
recovery. The finding that lesion size alone may not provide a complete explanation
for functional impairment caused by stroke is generally recognized and confirmed by
our results.

Furthermore, previous research affirmed the predictive relevance of functional connec-
tivity in stroke patients. The analysis of functional neuroimaging data according to stroke
has shown changes at several levels and can provide insights into network reorganization
processes [53]. In particular, reorganizing the sensorimotor network and corticospinal tract
after subcortical stroke is integral in supporting and improving functional recovery [54].
Further results indicate that the functional link between the limbic and dorsal attention
networks after a subcortical stroke could serve as a predictor for long-term motor function
and neurological deficit outcomes [55]. Previous work has demonstrated a substantial
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functional correlation between the motor cortices of the left and right hemispheres [17].
Various rs-fMRI studies have also observed reduced interhemispheric connectivity between
motor areas [18,19,21,56–58]. In this context, functional connectivity between motor areas
across the two hemispheres has been identified as a significant determinant of functional
outcomes after acute ischemic stroke [34]. Thus, it was concluded that functional recovery
following stroke is correlated to the maintenance of the functional connectivity of motor
and non-motor networks [59]. Further behavioral deficits after stroke show low dimension-
ality, reflected in broad yet consistent alterations in functional connectivity, such as reduced
modularity [60]. Another study based on over 1000 stroke lesions introduced the human
disconnectome, showing that brain disconnections shape functional organization and pro-
viding an atlas of white matter function to improve predictions and support cognitive
research [61]. Moreover, a novel stroke lesion network mapping approach demonstrated
increased specificity of disconnected systems and their correlation with post-stroke behav-
ioral impairments, yet it did not yield improved prediction models for clinical deficits [62].
Salvalaggio et al. had earlier described that the indirect inference of structural discon-
nection provides predictive value for post-stroke behavioral impairments analogous to
lesion-based models, whereas estimates of functional disconnection lacked predictive utility
and could not replace direct measures of functional connectivity [63]. Recently, evidence
has emerged suggesting that integrating multivariate lesion-behavior mapping with lesion
network analysis improves the prediction of long-term post-stroke impairments [64]. All
of this work contributes to the expanding body of evidence on brain networks and the
application of advanced neuroimaging techniques [65–67].

With regard to the asymmetric organization of functional connectivity in the human
brain, certain networks tend to exhibit dominance patterns that are influenced by individual
differences. In this context, our hemisphere-specific finding that the left hemisphere
model yielded higher R-squared values can be viewed in relation to previously described
functional asymmetries between the hemispheres. Previous work supports the existence of
hemispheric asymmetry, demonstrating higher intrahemispheric connectivity in the left
hemisphere—particularly in regions associated with linguistic functions and precise motor
control—while spatial perception and attention in the right hemisphere appears to engage
in a more integrative manner across both hemispheres [68]. Additionally, sex-dependent
hemispheric asymmetries have been reported, with males showing a more pronounced
leftward asymmetry [69].

Our study shows the feasibility of performing rs-fMRI in the early stroke phase. The
option provides the opportunity to implement early and targeted therapeutic interventions.
This is because functional connectivity in fMRI appears to be an imaging biomarker for
acute ischemic stroke and a potential treatment target [34]. Neurostimulation techniques
such as transcranial magnetic stimulation (TMS) can enhance motor cortex excitability,
but its therapeutic efficacy remains debated [70]. Nevertheless, the functional connectiv-
ity of motor cortices, assessed using rs-fMRI, can help identify patients at high risk for
unfavorable functional outcomes who may benefit from neurostimulation therapies. So,
TMS can potentially become an integral component of stroke therapy [71]. Consequently,
initiating rehabilitative treatments including neurostimulation techniques early on, right
within the acute phase in the stroke unit, could be a future-oriented practice in stroke
neurorehabilitation.

While rs-fMRI provides valuable insights due to its high spatial resolution and ability
to detect network-level dysfunctions, it is important to acknowledge the alternative modal-
ities described in the introduction (EEG, EPs, and USDG). These techniques offer superior
temporal resolution—on the order of milliseconds compared to the several-second delay
of hemodynamic responses captured by fMRI—enabling real-time monitoring, which is
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particularly advantageous for bedside applications. However, their spatial resolution and
capacity to assess deep brain structures and network-level alterations are limited compared
to fMRI. In contrast, the combined use of rs-fMRI with multiple linear regression and cross-
validation, as demonstrated in our study, offers a refined prognostic approach capable of
identifying the early markers of stroke severity. Our results, which demonstrate that lesion
size alone and in combination with connectivity metrics, explain a substantial proportion
of the variance in NIHSS scores and can be compared with the predictive accuracy reported
for EEG based approaches [72]. Moreover, EP measures, such as those derived from TMS,
may serve as valuable indicators for predicting functional recovery after stroke [73]. While
electrophysiology-based approaches show promise, their spatial and integrative capacities
are limited compared to MRI-based models, highlighting the potential of multimodal MRI
integration for clinical decision support.

An overarching objective of this study is to evaluate early neuroimaging markers
for stroke severity and to stratify patients according to their prognosis at an acute stage.
The recording of both the clinical and the anatomical MRI data can be performed in the
clinical setting without any significant difficulties. Moreover, a benefit is the capability to
integrate rs-fMRI into routine clinical MRI protocols. The procedure remains challenging,
of course, due to several practical limitations. First, the required scan duration (7.57 min in
our study) may exceed patient tolerance in the acute setting and increase susceptibility to
motion artifacts. Patient-related factors such as reduced consciousness, agitation, or clinical
instability further complicate image acquisition and data quality. Despite these barriers,
clinical experience shows that after careful selection stroke patients can tolerate rs-fMRI
without serious problems. Second, the availability of advanced MRI infrastructure and
trained personnel for data preprocessing and analysis is limited in many clinical settings,
particularly in non-tertiary stroke centers. Third, acute stroke workflows are typically
optimized for time-critical decisions based on structural imaging (e.g., DWI, computed
tomography), which can be completed more rapidly and are essential for treatment selection.
As a result, rs-fMRI remains primarily a research tool, with future clinical integration
dependent on technical advances in motion correction, automated processing pipelines,
and streamlined protocols that minimize acquisition time and complexity. Addressing
these barriers is critical for the eventual translation of connectivity-based biomarkers into
routine stroke care. As described previously, diverse potential biomarkers that can predict
the likelihood of functional recovery after stroke have been identified in existing studies.
Future research should consider integrating broader biomarkers from large databases
and employing techniques to develop algorithms that more accurately predict patients’
recovery potential post-stroke [74]. In the context of our results, lesion size and functional
connectivity can predict the clinical condition of stroke patients in the acute phase.

It is crucial to acknowledge the following limitations of our study: First, our cohort was
restricted to subcortical ischemic strokes, yielding relatively homogeneous motor–sensory
deficits. Consequently, generalizability to purely cortical stroke populations is uncertain:
cortical lesions often span multiple functional networks (e.g., language, attention, and
memory), producing more heterogeneous clinical profiles and may compromise BOLD-
signal fidelity in cortical ROI seeds. Second, although a whole-brain rs-fMRI analysis would
offer broader insight, cortical lesion cohorts require specialized preprocessing—such as
cost-function masking [75] or enantiomorphic normalization [76]—and ROI redefinition to
mitigate distortion from large cortical infarcts. Third, we did not perform task-based fMRI,
which in cortical strokes is particularly valuable for dissociating network dysfunction across
cognitive and motor domains. Fourth, our primary outcome was acute NIHSS, which
emphasizes motor and language impairments but underrepresents cognitive and high-order
deficits common in cortical strokes; future work should incorporate domain-specific scales



Brain Sci. 2025, 15, 735 16 of 21

(e.g., Fugl-Meyer score for sensorimotor impairments, Montreal Cognitive Assessment
for cognition). Fifth, symptom and lesion-location heterogeneity in cortical cohorts (e.g.,
aphasia vs. visuospatial neglect) may further reduce statistical power and necessitate
domain-specific subanalyses or larger, stratified samples. The general population of stroke
patients is characterized by heterogeneity in several aspects, such as type of stroke, lesion
characteristics, initial motor impairment, or vascular risk factors. Furthermore, treatment-
related heterogeneity exists, as some patients received thrombolysis and/or thrombectomy.
While we documented these interventions, treatment variables were not included in the
final models to avoid overfitting, given the limited sample size and our focus on imaging-
derived predictors. Nevertheless, we recognize that future studies with larger cohorts
and detailed treatment timing may uncover additional variances explained by therapeutic
interventions. Sixth, technical constraints—such as a short scan duration, motion artifacts,
and a limited signal-to-noise ratio—remain a concern. In addition, cortical-lesion-specific
normalization methods (cost-function masking, enantiomorphic) and advanced parcellation
tools (Virtual Brain Grafting (VBG) [77], Virtual Brain Transplantation (VBT) [78]) should
be prioritized in future studies to improve reproducibility of network models. Generally,
in functional connectivity analysis, the selection of brain structures and potential artifacts
must be considered, for which Independent Component Analysis (ICA) can serve as a
valuable tool [79]. Overall, specific requirements for stroke MRI processing in stroke
research have been widely acknowledged, also with diverse normalization methods [80,81].
Finally, to test whether lesion size and functional connectivity retain their predictive value
beyond subcortical strokes, mixed-lesion cohorts with stratification by lesion location are
essential. Integrating complementary modalities (EEG, magnetoencephalography) and
longitudinal outcome measures will further strengthen generalizability across the full
spectrum of ischemic stroke.

5. Conclusions
In summary, our findings suggest that integrating lesion size and resting-state func-

tional connectivity (rs-fMRI) yields a reliable and informative prediction of clinical status
in the acute phase of ischemic stroke, as measured by the NIHSS score. This combined
approach enhances predictive accuracy compared to lesion metrics alone and emphasizes
the value of network-based information in explaining early neurological impairment.

The prognostic relevance of our approach extends beyond mere classification. By
capturing early alterations in brain network integrity, particularly within the sensorimotor
system, rs-fMRI offers the opportunity to stratify patients by recovery potential. This
may support individualized rehabilitation planning by identifying patients at risk of poor
outcomes who could benefit from targeted interventions such as neuromodulation or in-
tensified therapy. Brain networks—especially those showing disrupted interhemispheric
or intra-network connectivity—emerge as meaningful targets for therapeutic modulation.
A major advantage of our method lies in its clinical applicability: rs-fMRI is task-free,
can be performed within a short scan time, and may be seamlessly integrated into ex-
isting stroke imaging protocols within hours of symptom onset. Our data demonstrate
its feasibility even in the acute-to-subacute stage, reinforcing its potential role in early
decision-making. While this study focused on a single time point during the acute to early
subacute phases, follow-up examinations—if acquired in future studies—could be analyzed
to assess dynamic reorganization processes during recovery. Evaluating time-dependent
changes in connectivity metrics over the course of hospitalization or rehabilitation could
further enhance prognostic modeling and should be a priority for future research.

Taken together, this work supports the use of multimodal imaging to improve early
functional prognosis after stroke. Future prediction models incorporating both anatomical
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and functional markers, possibly enriched with longitudinal imaging and behavioral data,
may advance personalized stroke care and guide rehabilitative strategies more precisely.
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AIC Akaike Information Criterion
BIC Bayesian Information Criterion
BOLD Blood Oxygenation Level Dependent
CAT Computational Anatomy Toolbox
CSF Cerebrospinal fluid
DMN Default Mode Network
DTI Diffusion tensor imaging
DWI Diffusion-weighted imaging
EEG Electroencephalography
EP Evoked potential
EPI Echo-planar imaging
FA Flip angle
FLAIR Fluid-attenuated inversion recovery
FOV Field Of View
FWHM Full-width at half-maximum
GM Gray matter
ICA Independent Component Analysis
LASSO Least Absolute Shrinkage and Selection Operator
LST Lesion Segmentation Toolbox
MEG Magnetoencephalography
ML Machine learning
MM Millimeter
MNI Montreal Neurological Institute
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MPRAGE Magnetization-prepared rapid acquisition gradient-echo
MRI Magnetic Resonance Imaging
MRS Modified Rankin Scale
MS Milliseconds
MSE Mean squared error
NIHSS National Institutes of Health Stroke Scale
ROI Region of interest
RS-FMRI Resting-state functional Magnetic Resonance Imaging
RSN Resting state networks
SD Standard Deviation
SPM Statistical Parametric Mapping
TE Echo time
TI Inversion time
TMS Transcranial Magnetic Stimulation
TOAST Trial of Org 10172 in Acute Stroke Treatment
TR Repetition time
USDG Ultrasound dopplerography
VBG Virtual Brain Grafting
VBT Virtual Brain Transplantation
VIF Variance Inflation Factor
WM White matter
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