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Several lines of evidence suggest that cognitive control deficits may be regarded as a connecting link between
reported impairments in different cognitive domains of schizophrenia. However, the precise interplay within
the fronto-cingulo-thalamic network known to be involved in cognitive control processes and its structural
correlates has only been sparsely investigated in schizophrenia. The present multimodal study was therefore
designed tomodel cognitive control processeswithin the fronto-cingulo-thalamic network. A disruption in effec-
tive connectivity in patients in association with abnormal white matter (WM) structure in this network was
hypothesized. 36 patients with schizophrenia and 36 healthy subjects participated in the present study. Using
functional magnetic resonance imaging (fMRI) a Stroop task was applied in an event-related design. For model-
ing effective connectivity dynamic causal modeling (DCM) was used. Voxel-based morphometry (VBM) was
employed to study WM abnormalities. In the fMRI analysis, the patients demonstrated a significantly decreased
BOLD signal in the fronto-cingulo-thalamic network. In the DCM analysis, a significantly decreased bilateral
endogenous connectivity between the mediodorsal thalamus (MD) and the anterior cingulate cortex (ACC)
was detected in patients in comparison to healthy controls, which was negatively correlated with the Stroop in-
terference score. Furthermore, an increased endogenous connectivity between the right DLPFC and the right MD
was observed in the patients. WM volume decreases were observed in the patients in the MD and the frontal
cortex. The present results provide strong evidence for the notion that an abnormal fronto-cingulo-thalamic ef-
fective connectivity may represent the basis of cognitive control deficits in schizophrenia. Moreover, the data in-
dicate that disrupted white matter connectivity in the mediodorsal thalamus and in the fronto-cingulo-thalamic
network may constitute the determining cause of fronto-cingulo-thalamic dysconnectivity.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Schizophrenia is a serious debilitating disorder, with the cognitive
dysfunction representing a core feature of this disease. Cognitive deficits
may have strong impact on activities of daily living and they have been
associated with poor clinical outcome (Green, 1996).

Neuropsychological studies reported a dysfunction in various cogni-
tive domains like e.g. working memory (Glahn et al., 2003) or selective
attention (Nuechterlein and Dawson, 1984). It was recently hypothe-
sized that cognitive control deficits in schizophrenia may be regarded
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as a connecting link between reported impairments in different cogni-
tive domains (Lesh et al., 2011). Defining “cognitive control” as an
ability to maintain context information in the presence of interference
and flexibly adapt behavior to reach the stated goal, it represents an
integral part of a wide range of cognitive processes.

Neuroimaging studies in healthy subjects emphasized a pivotal
role of the fronto-cingulate network in cognitive control functions
(Mansouri et al., 2009). In particular, the dorsolateral prefrontal cortex
(DLPFC) was associated with maintenance of context information
(e.g. rules) and response selection (Egner and Hirsch, 2005), whereas
the anterior cingulate cortex (ACC) was related to conflict detection,
error and performancemonitoring in order to signal need for behavioral
adjustment (Kerns et al., 2004).

In a meta-analysis comprising 41 neuroimaging studies of the exec-
utive function (e.g. using Stroop task) in patients with schizophrenia,
Minzenberg et al. (2009) reported a consistent pattern of reduced
activation in bilateral DLPFC, ACC, and mediodorsal thalamus (MD).
This result supports the notion that the brain network relevant for
ved.
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cognitive control is altered in schizophrenia. Furthermore, there is
growing evidence, that apart from the fronto-cingulate regions the
cerebellar (Schmahmann, 2010) and thalamic (Saalmann and Kastner,
2011) areas, commonly referred to as cortico–cerebellar–thalamic–
cortical circuitry (CCTCC), are involved in higher cognitive functions.

In particular, it has been proposed that the thalamus plays a crucial
role in synchronizing large-scale cortical oscillations within thalamo-
cortical loops thus coordinating and facilitating information transfer
(Siegel et al., 2012). For schizophrenia Andreasen et al. (1999) intro-
duced the concept of “cognitive dysmetria” to characterize disintegra-
tion in the CCTCC leading to a defect in the timing or sequencing
component of mental activity. Jones (1997) proposed that functional
disturbances in the thalamo-cortical circuits in conjunction with loss
of thalamic cells could lead to impaired thalamo-cortical oscillations in
schizophrenia.

Electrophysiological studies provided strong evidence for the postu-
lated abnormalities in synchronized oscillatory activity in schizophrenic
patients, predominantly in the beta- and gamma-band range (Sun et al.,
2011; Uhlhaas and Singer, 2010). Deficient synchronization of these os-
cillations is known to impair the integration of neural responses and
may thus constitute the basis of the frequently reported alterations
in functional connectivity of cortical networks resulting in deficient
cognitive control processes in schizophrenia.

In the same vein, altered functional interactions were described
predominantly on the basis of a correlational analysis in patients with
schizophrenia with regard to intrafrontal, fronto-cingulate and fronto-
thalamic connectivity (Pettersson-Yeo et al., 2011). Whereas measures
of functional connectivity do not necessarily imply a causal link be-
tween correlated regions, studying effective connectivity, e.g. using
dynamic causal modeling (DCM, Friston et al., 2003) enables causal
inferences about the directionality of interactions between distinct
brain regions together with their context-dependent modulation. Only
very few studies have investigated the effective connectivity in the
fronto-thalamic network so far. Using structural-equation modeling
(SEM) our group observed abnormal effective connectivity in the
fronto-thalamic circuitry during a working memory task (Schlösser
et al., 2003). DCM is a powerful method for assessing effective connec-
tivity and has been widely used across different imaging modalities,
populations and tasks (Friston, 2009). The potential of DCM for model-
ing effective connectivity in schizophrenia has been demonstrated,
e.g. with regard to the fronto-parietal network (Deserno et al., 2012).
However, the fronto-thalamic connectivity during cognitive control has
not been investigated using DCM in schizophrenia.

Furthermore, volume reductions of the thalamus and fronto-
cingulate regions were consistently observed in schizophrenia (Honea
et al., 2005; Wright et al., 2000). Volumetric studies of white matter
(WM) often reported reduced volume of the anterior limb of the internal
capsule (ALIC; Hulshoff Pol et al., 2004;Wobrock et al., 2008), a structure
well known to connect the thalamus with ACC and DLPFC. A recent
meta-analysis including 79 studies (Bora et al., 2011) revealed a signifi-
cant WM volume bilateral reduction in the ALIC and in the right inferior
longitudinal fasciculus. In the same meta-analysis of DTI studies the
authors reported in agreement with volumetric studies reduced WM
integrity in the ALIC in terms of decreased fractional anisotropy (FA).
Further regions of reduced FA included, among others, the cingulum
and themedial PFC (Bora et al., 2011). Thus, previous results clearly indi-
cated abnormal white matter connectivity in the fronto-thalamic circuit
in schizophrenia.

Multiple lines of evidence suggest that disrupted functional and struc-
tural connectivity within the cortico-thalamic network may represent
the basis of cognitive control deficits in schizophrenia (Eisenberg and
Berman, 2010; Stephan et al., 2009a). However, the precise interplay
within the fronto-thalamic network during executive processing and its
structural correlates has only been sparsely investigated.

Therefore, the present study was designed to further elucidate
the functional and structural bases of cognitive control deficits in
schizophrenia. Univariate fMRI data analysis was calculated to investi-
gate the abnormal functional activation patterns in schizophrenia and
to define the ROIs for the effective connectivity analysis. We hypothe-
sized decreased BOLD signal in the fronto-cingulo-thalamic network
in patients. The main focus of the present study was on modeling
effective connectivity within the fronto-cingulo-thalamic network
during performance of a cognitive control task by means of DCM. We
hypothesized decreased effective connectivity in this network. Further-
more, voxel-based morphometry (VBM) of the white matter was used
to uncover the hypothesized WM volume reductions in the fronto-
cingulo-thalamic network and to relate WM volume to parameters of
effective connectivity.

2. Materials and methods

2.1. Patients and controls

A total of 36 patients meeting the DSM-IV criteria for schizophrenia
were recruited from the inpatient service of the Department of Psychi-
atry of the University Hospital Jena. Diagnosis was established by the
Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and
confirmed independently by two clinical psychiatrists (R.S. and C.S.).
There was no history of drug and alcohol abuse or dependence in the
patient or in the control group.

Two patients had to be excluded from the study due to brain abnor-
malities in the MRI scan. Thus, the final sample consisted of 34 patients
(11 females and 23 males) and 36 healthy control subjects (11 females
and 25 males) matched for age, gender and education. On average,
patients were 35.9 ± 9.8 years old and had a mean education of
10.7 ± 1.2 years. In the healthy controls mean age was 32.4 ± 8.0
and mean education was 10.9 ± 1.2 years. There was no significant
difference between the groups in terms of age, gender and education.

The patients were free of any other psychiatric diagnosis and had no
interfering neurological conditions and were on long-term treatment
with atypical antipsychotics, for 9.1 years on average. Regarding the
type of substance class of atypical antipsychotics, 5 patients were treated
with olanzapine, 7with risperidone, 6with clozapine, 5with aripiprazole,
7with quetiapine and4with amisulpride. Four patientswere additionally
treated with an SSRI.

The psychopathological status was assessed by the Scales for the
Assessment of Positive and Negative Symptoms (Andreasen, 1990)
(SAPS and SANS). The patients' scores were 40.03 ± 19.24 on SANS
and 31.38 ± 25.79 on SAPS. The mean age at onset of schizophrenia
was 26.3 years (SD = 9.38). The patients had on average 3.7 episodes
with a range of 1 to 10 episodes.

A multiple choice vocabulary test (MWT-B, Lehrl et al., 1995) con-
firmed that none of the participants was mentally retarded (patients:
M = 107.9, SD = 11.8; controls: M = 114.5, SD = 13.6).

Controls were recruited by local newspaper advertisement and
screened for psychiatric or neurological diseases. The controls with
past or current neurological or psychiatric diseases and/or first-degree
relatives with axis I psychiatric disorders were excluded from the
study. All participants were right-handed, according to the modified
version of Annetts handedness inventory (Briggs and Nebes, 1975)
and provided written informed consent prior to participating in the
study. The study protocol was approved by the Ethics Committee of
the University of Jena.

2.2. Experimental paradigm

The Stroop task was described in detail in our previous publication
(Wagner et al., 2006). In brief, the Stroop task consisted of two
conditions: a congruent and an incongruent condition. In the congruent
condition, color words were presented in the color denoted by the
corresponding word; in the incongruent condition, color words were
displayed in one of three colors not denoted by the word. All subjects
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had to indicate the color type by pressing one of two buttons, which
corresponded spatially to both possible answers.

2.3. MRI procedure

Functional data were collected on a 3 Twhole body system equipped
with a 12-element receive-only head matrix coil (MAGNETOM
TIM Trio, Siemens). T2⁎-weighted images were obtained using a
gradient-echo EPI sequence (TR = 2040 ms, TE = 26 ms, flip
angle = 90°) with 40 contiguous transverse slices of 3.3 mm thick-
ness covering the entire brain. Matrix size was 72 × 72 pixels with
in-plane resolution of 2.67 × 2.67 mm2 corresponding to a field of
view of 192 mm × 192 mm. A series of 220 whole-brain volume
sets were acquired in one session.

High-resolution anatomical T1-weighted volume scans (MP-RAGE)
were obtained in sagittal orientation (TR = 2300 ms, TE = 3.03 ms,
TI = 900 ms, flip angle = 9°, FOV = 256 mm, matrix = 256 mm ×
256 mm, number of sagittal slices = 192, acceleration factor
(PAT) = 2, TA = 5:21 min) with an isotropic resolution of
1 × 1 × 1 mm3.

2.4. FMRI: univariate statistical analysis

For image processing and statistical analyses, we used the SPM8
software (http://www.fil.ion.ucl.ac.uk/spm). Data preprocessing was
identical to our previous study (Wagner et al., 2006). In addition,
individual movement parameters entered a fixed effects model at a
single-subject level as covariates of no interest. None of the studypartic-
ipants showed excessive movements during the scanning session
(exceeding 3 mm translation or 3° rotation). For the second level
group comparison we set up an ANCOVA design with a between-
subjects factor GROUP (patients vs. controls) and a within-subjects
factor TASK (congruent vs. incongruent condition) controlling for the
significant differences in behavioral performance between patients
and control subjects. For this purposewe used the number of correct re-
sponses as well as the mean reaction time as covariates in the ANCOVA
model. The main effect of GROUP as well as TASK × GROUP interaction
was inclusively masked with the Stroop effect contrast (p b 0.05
uncorr.) and thresholded on the voxel-level at p b 0.001 (uncorrected)
and on the cluster-level at p b 0.05, FWE corrected (equal to k = 227).
The contrast used for masking was orthogonal to the contrast being
tested for. The Stroop effect contrast, i.e. incongruent vs. congruent
condition was computed in the ANOVA design (without covariates)
and thresholded on the voxel-level at p b 0.05, FWE corrected.

2.5. Dynamic causal modeling (DCM)

DCM (Friston et al., 2003) as implemented in SPM8 was employed
for the effective connectivity analysis. DCM is a hypothesis-driven
approach, which aims to estimate and make inferences about the influ-
ence that oneneural systemexerts over another andhow this is affected
by the experimental context. For a given model, DCM estimates differ-
ent sets of parameters: extrinsic parameters, which define the input of
external stimuli on brain regions (“driving input”); endogenous param-
eters, which characterize context-independent connectivity between
two regions; and modulatory parameters, which measure changes in
effective connectivity modulated by the experimental task or by the
activity in a region (Stephan et al., 2008). Parameter estimation is
performed within a Bayesian framework using an empirical forward
model that combines observed hemodynamic responses with the
hidden neuronal dynamics.

2.6. DCM specification

Based on our hypothesis, the present univariate results (i.e. main
effect of TASK) and previous cognitive control studies, we defined a
model, which included the dorsal ACC, theDLPFC and theMD bilaterally
as the key regions of the cognitive control network. In detail, the stimu-
lation of the primary visual cortex (V1) was regarded as the driving
input for the model. We assumed that the PFC receives visual stimulus
material from the occipital cortex via the posterior parietal cortex
(Kravitz et al., 2011).

However, to maintain a low complexity level of the model network,
we directly modeled unidirectional input from V1 to DLPFC (analogous
to Etkin et al., 2006; Schlösser et al., 2010). TheDLPFC and the ventrolat-
eral PFC (VLPFC) are integral parts of the fronto-cingulate network
subserving the Stroop task. Previous studies have suggested that both
the DLPFC and the VLPFC are involved in cognitive control (Blasi et al.,
2006; Kondo et al., 2004). We restricted the included PFC areas to the
DLPFC to keep the model complexity low. Another reason to restrict
the analysis to DLPFC was its well described anatomical connectivity
with the mediodorsal thalamus. The MD has dense anatomical connec-
tionswith DLPFC and dACC and is strongly involved in cognitive control
functions (Watanabe and Funahashi, 2012). For example, Tanibuchi
and Goldman-Rakic (2003) observed during processing of a delayed
response task that neurons in the MD, which are interconnected with
neurons in the DLPFC, showed a similar activity as neurons in the
DLPFC, indicating their important role in the maintenance of informa-
tion. Furthermore, strong evidence points towards dense structural
connectivity and close functional interplay between dACC and the
DLPFC (Erickson et al., 2004;MacDonald et al., 2000). These two regions
are considered as central components of most cognitive control models
(Carter and vanVeen, 2007). The ACCwasmodeled in the present study
as a higher cognitive control unit responsible for error detection and
conflict resolution (Mansouri et al., 2009). Consequently, we did not
include direct interactions between V1 and dACC. This model follows
previous conceptualizations of response competition tasks like the
Stroop task where the stimulus material is received by units processing
information about task demands (PFC) and cognitive control is exerted
by nodes responsible for conflict monitoring (ACC) (Cohen et al., 2000).

With regard to the general pattern of endogenous connections, we
were interested to figure out in which areas of the fronto-cingulo-
thalamic network the existing connectivity was mainly located. In
order to systematically investigate this aspect we compared different
models with different architectures of endogenous connections using
the Bayesian model selection (BMS) approach (Fig. 1).

2.7. Model comparison

BMS was performed as part of a systematic comparison in which
alternative models were evaluated (Penny et al., 2004). BMS was based
upon a random effects model that accounts for between-subjects
heterogeneity in terms of which model best explains the measured
data. In the BMS procedure, the probability that the data are explained
by the model, i.e. the model evidence, is approximated by the negative
variational free-energy as an optimal compromise between accuracy
and complexity of amodel (Stephan et al., 2009b) and is used to compare
between alternative models. The results of group specific BMS showed
(Fig. 1) that in the control group the model that contains the full endog-
enous connectivity except interthalamic connection (model 9) is a win-
ner model for the endogenous connection pattern, whereas in the
schizophrenia group, model 5 with lower complexity is the winner.

Therefore, due to the fact that potential between-group differences in
estimated parameters may be due to differences in model fit, BMS was
conducted for all subjects together with no distinction by group. As illus-
trated in Fig. 1 the resulting optimal model for all subjects was model 6,
which was used as the reference model of the cognitive control network.

2.8. Modulatory parameter

Modulatory connectivity parameters were specified to investigate
the influence of the incongruent and congruent Stroop conditions on

http://www.fil.ion.ucl.ac.uk/spm


Fig. 1. Bayesian model selection (BMS). (a) Seven area DCM model of effective connectivity was constructed with bidirectional connections to/from dACC, DLPFC and mediodorsal
thalamus. Models 1 to 10 specify different locations of endogenous connectivity with increasing model complexity (Model 2 = 1 + 2, Model 3 = 2 + 3, and so on). (b) Exceedance
probabilities for models 1–10 in controls. (c) Exceedance probabilities for models 1–10 in schizophrenic patients. (d) Exceedance probabilities for models 1–10 in patients and controls.
The exceedance probabilities in BMS give the probability that one model is more likely than another to generate the observed data. Model 9 was the optimal one in the group of healthy
controls and model 5 in schizophrenia patients. In the next step the BMS was performed for all subjects together. The resulting optimal model was the model 6, which was used as the
reference model of the cognitive control network. Endogenous and modulatory parameters were extracted from this model for further group comparison.
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the defined connections within the modeled network. Assuming a
specific task influence on all fronto-cingulo-thalamic connections as
indicated by the univariate fMRI analysis, we examined the influence
of induced conflict on all endogenous connections, determined by the
previous model selection step (model 6)

2.9. Time series extraction

The ROI placement was based on the results of the univariate SPM
analysis. To account for potential variability in the activation location
at the individual subject level, we at first created a mask image as a
10 mm radius sphere around the maximum coordinates from all
seven seed regions of interest as extracted from the contrast incongru-
ent vs. congruent Stroop condition. Subsequently the individual local
maximumwithin this mask image was extracted to build the individual
seed ROI, for each subject, and average time courses were extracted
from the seven seed regions of interest defined as a 4 mm sphere
around coordinates derived from the individual local maximum coordi-
nate within the ROIs. The first eigenvariate was calculated via singular
value decomposition and used for further data processing. All time-
series were adjusted for confounds (e.g. global mean, low-frequency
components). Details of this approach have been described elsewhere
(Schlösser et al., 2010). The final areas and mean coordinates of local
maxima resulting from the described ROI definition strategy were: left
(BA17/18, x = −32, y = −87, and z = −9) and right primary visual
cortex (BA17/18, x = 30, y = −88, and z = −6), dorsal ACC (BA24,
x = 3, y = 29, and z = 31), left (BA9/46, x = −46, y = 26, and
z = 21) and right DLPFC (BA9/46, x = 47, y = 25, and z = 27), left
(x = -8, y = −16, and z = 8) and right thalamus (x = 9, y = −12,
and z = 9).

2.10. Group comparisons

Second level statisticswere performedwith connectivity parameters
bymeans of ANOVA. This analysis includedmain effects of GROUP, TASK
and TASK × GROUP interactions.

2.11. Voxel-based morphometric (VBM) analysis of the white matter

The preprocessing and statistical analyses were performed using
the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm) as implemented
in SPM8. The T1-weighted images were corrected for bias-field inhomo-
geneities, registered using a linear (12-parameter affine) and a nonlinear
transformation, stripped of non-brain tissue, and tissue-classified into
gray matter, white matter, and cerebrospinal fluid. A high-dimensional

http://dbm.neuro.uni-jena.de/vbm
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normalization (DARTEL) was performed using the DARTEL template in
the MNI space that is provided with the VBM8 toolbox.

This VBM8 segmentation procedure contains partial volume estima-
tion (PVE) to account for mixed voxels with two tissue types (Tohka
et al., 2004). The algorithm is based on an adaptive maximum a
posteriori (AMAP) approach (Rajapakse et al., 1997) with subsequent
application of a hidden Markov random field model (Cuadra et al.,
2005). This accounts for intensity inhomogeneities and other local
variations of intensity.

Due to our primary hypothesis, we restricted the VBM analysis
to only differences in white matter. Therefore, the resulting individual
WM volume images were voxel-wise multiplied by the determinants
of Jacobianmatrices fromnonlinear transformations before the statistical
analysis on local WM volumes was performed. This modulation adjusts
for local volume changes introduced by the nonlinear normalization.
Finally, Gaussian smoothing was performed with a kernel of 8 mm
FWHM.

Due to our strong a-priori hypothesis of differences in the fronto-
cingulo-thalamic network regarding theWM volume between patients
and healthy controls the conducted one-way ANOVA was thresholded
on the voxel-level at p b 0.001, uncorrected and on the cluster-level
according to the expected number of voxels per cluster.

Correlations between parameters of WM volume extracted from
the significant clusters of the group comparison and connectivity pa-
rameters were finally performed to investigate a potential association
between alterations in effective connectivity and WM volume in pa-
tients. All MNI coordinates were converted to Talairach coordinates
using the mni2tal algorithm (Brett et al., 2001).

3. Results

3.1. Behavioral data

For the reaction times, the two-way ANOVA revealed a significant
main effect of TASK (F(1, 68) = 82.65; p b 0.001), a significant main
effect of GROUP (F(1, 68) = 16.99; p b 0.001) and a significant
GROUP × TASK interaction (F(1, 68) = 8.10; p = 0.006), indicating
significantly impaired performance in patients in the incongruent
condition.

The patients showed 98.5% (SD = 3.4%) correct responses in the con-
gruent and 84.6% (SD = 12.2%) correct responses in the incongruent
Table 1
Main effect of TASK: incongruent vs. congruent Stroop condition (voxel-level p b 0.05, FWE cor
performance: healthy controls vs. schizophrenia patients for both Stroop conditions together (

Region of activation Right/Left Brodmann's area C

Main effect of TASK: incongruent N congruent
Inferior frontal gyrus L 47 2
Middle frontal gyrus L 46
Inferior frontal gyrus R 47
Anterior cingulate L 32 1
Middle frontal gyrus R 46
Thalamus R
Thalamus L
Middle temporal gyrus L 22
Cerebellum R 113

L 13
Fusiform gyrus L 19
Caudate R

Main effect of GROUP, controlling for differences in Stroop task performance: controls N patients
+Middle frontal gyrus R 9/46
Inferior frontal gyrus R 45
Anterior cingulate R 32
Thalamus L
Thalamus R
Cerebellum L 1

R

condition. The control subjects showed 99.2% (SD = 1.9%) correct re-
sponses in the congruent and 93.5% (SD = 10.4%) correct responses in
the incongruent condition. There was a significant difference in perfor-
mance accuracy between groups for the incongruent (p b 0.001),
but not for the congruent condition (p = 0.57) according to the Mann–
Whitney Test.

3.2. FMRI — univariate statistical analysis

3.2.1. Main effect of TASK (Stroop effect)
In the second level random effects ANOVA a significant overall

main effect of TASK (incongruent vs. congruent) was predominantly
observed in the fronto-cingulo-thalamic network. We did not detect
any significant activation differences in the opposite contrast (Table 1,
Fig. 2a).

3.2.2. Main effect of GROUP controlling for behavioral performance
In the ANCOVA main effect of GROUP (congruent and incongruent

conditions together) patients demonstrated significantly lower activa-
tion relative to healthy controls in a number of regions of the CCTC
circuitry (Table 1, Fig. 2b). We did not detect any significant activation
differences in the opposite contrast, i.e. patients vs. controls.

3.2.3. Task by group interaction controlling for behavioral performance
There were no significant voxels in the TASK × GROUP interaction.

3.3. Dynamic causal modeling

3.3.1. Endogenous connectivity
Mean endogenous parameters for both groups are displayed in

Table 2. As illustrated in Fig. 3, the patients showed lower endogenous
parameters in the projections from the dACC to the left (p = 0.007)
and right thalamus (p = 0.003), and stronger connectivity from the
right DLPFC to the right thalamus (p = 0.003). All comparisons sur-
vived FDR correction for multiple comparisons. On the uncorrected
level patients showed a lower connectivity between the dACC and the
right DLPFC (p b 0.05).

3.3.2. Modulatory connectivity
There were no significant differences between control subjects and

patients with schizophrenia regarding the modulatory parameters.
r.) for both groups together; main effect of GROUP controlling for differences in behavioral
voxel-level: p b 0.001, cluster-level: p b 0.05, FWE corr.).

luster size Talairach coordinate T value

x y z

049 −32 25 1 8.82
−46 28 15 7.47

652 34 25 −5 7.80
201 −2 14 42 7.78
123 48 17 19 5.40
66 −4 −25 0 5.70

6 −21 1 5.45
38 −48 −44 11 5.34

8 −71 −17 6.26
−4 −47 −14 5.25

11 −36 −70 −7 5.28
15 12 6 11 5.37

259 40 7 31 4.98
235 57 18 1 4.22
398 6 43 9 3.78
771 12 −3 11 4.71

−14 −3 13 4.17
101 −30 −71 −22 5.52

24 −71 −20 4.48



Fig. 2. FMRI— univariate statistical analysis. A: Significant (p b 0.05, FWE corr.) main effect of TASK, incongruent N congruent condition, for both groups together is detected in the dorsal
ACC (BA 32), bilaterally in the DLPFC (BA 9/46), VLPFC (BA 47/45), and in the mediodorsal thalamus. Additionally, an overall main effect of TASK is also seen in the left middle temporal
gyrus (BA 22), left cerebellum and the left fusiform gyrus (BA 19). B: In themain effect of GROUP (congruent and incongruent conditions together, controlling for differences in behavioral
performance) patients demonstrated significantly (voxel-level p b 0.001, cluster-level p b 0.05 FWE corrected) lower activation relative to healthy controls bilaterally in the cerebellum
and the mediodorsal thalamus, in the dACC (BA 32), right DLPFC and VLPFC, right middle temporal gyrus, and bilaterally in the occipital lobe (BA 18/19).

Table 2
DCM parameters of endogenous connectivity.

Patients HC

M SD M SD p

L_DLPFC → L_Thal 0.18 0.33 0.05 0.46 n.s.
dACC → L_Thal_ 0.15 0.61 0.57 0.64 0.007a

L_V1 → L_DLPFC 0.28 0.24 0.24 0.32 n.s.
L_Thal → L_DLPFC 0.22 0.53 -0.04 0.58 n.s.
dACC → L_DLPFC 0.15 0.72 0.47 0.70 n.s.
R_DLPFC → R_Thal 0.26 0.41 -0.04 0.41 0.003a

dACC → R_Thal 0.17 0.59 0.62 0.65 0.003a

R_V1 → R_DLPFC 0.27 0.27 0.28 0.29 n.s.
R_Thal → R_DLPFC 0.17 0.46 0.02 0.52 n.s.
dACC → R_DLPFC 0.05 0.74 0.41 0.73 0.04
L_Thal → dACC 0.05 0.51 0.04 0.49 n.s.
L_DLPFC → dACC 0.05 0.22 -0.01 0.40 n.s.
R_Thal → dACC 0.06 0.39 0.13 0.52 n.s.
R_DLPFC → dACC 0.06 0.28 -0.10 0.38 n.s.

a Survives FDR correction at p = 0.05.
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3.3.3. Voxel-based morphometry
Testing differences in regional WM volume between the patients

and healthy controls, we found three clusters of regional decreases in
WM in the patients (Table 3, Fig. 4). The largest cluster comprised
white matter voxels located bilaterally in the MD. The second cluster
consisted of voxels lying in the right frontal lobe in close proximity to
the cingulum bundle. On the left side, the patients showed decreased
left frontal WM volume near BA 8. No significant differences were
detected in the opposite contrast.

3.4. Correlations

3.4.1. Task performance and endogenous connectivity
In patients with schizophrenia, a significant negative correlation

between decreased endogenous parameter of the connectivity between
dACC and left (r = −0.38, p = 0.027) as well as rightMD (r = −0.42,
p = 0.014) and the Stroop interference time was detected, indicating
increased time demand to resolve the response conflict in the presence
of decreased intrinsic cingulo-thalamic effective connectivity.

3.4.2. WM–DCM correlation
No significant correlations between the clusters of significantly

decreased WM volume and decreased endogenous parameter could
be detected in patients with schizophrenia.

4. Discussion

To our knowledge, this is the first study that examines effective
connectivity within the cognitive control network in schizophrenia
and relates connectivity parameters to brain abnormalities in the
white matter volume. One major finding of the univariate analysis sug-
gests a functional disruption of the fronto-cingulo-thalamic network in
schizophrenia, which seems to constitute the neural basis of deficient
cognitive control processes that were observable in terms of prolonged
reaction times and increased number of errors in the Stroop task. This
result confirms our initial hypothesis and is in line with a recent meta-
analysis (Minzenberg et al., 2009) as well as with our own previous
study (Schlösser et al., 2008). Furthermore, the lack of a significant
TASK × GROUP interaction in the fMRI analysis in the presence of a
significant main effect of GROUP might suggest that the patients and
controls showed a comparable increase of the BOLD signal in the
fronto-cingulo-thalamic network from the congruent to the incongruent
condition. This indicates that the patients were able to recruit regions of
the fronto-cingulo-thalamic network with increasing cognitive control
demands, however, on a lower level compared to the healthy subjects.

The investigation of effective connectivity with DCM indicated that
this altered fronto-cingulo-thalamic activationmay be the consequence



Fig. 3. Effective connectivity analysis. Dynamic causal modeling: significantly decreased parameters (red color) and increased (blue color) of endogenous connectivity in patients
compared to healthy controls. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of an impaired interplay within these network areas as the endogenous
connectivity – predominantly between the dACC and mediodorsal
thalamus – turned out to be significantly decreased in patients with
schizophrenia. It was further negatively correlated with the Stroop in-
terferences time, indicating its important role in response inhibition
and motor preparation processes (Schulz et al., 2011; Watanabe and
Funahashi, 2012). On the other hand a stronger endogenous connectiv-
ity was observed between the right DLPFC and the rightMD, potentially
reflecting a compensatory hyperconnectivity in the light of the reduced
predominantly right-lateralized BOLD signal in theDLPFC and thalamus.
Furthermore, as revealed by the Bayesian model selection the informa-
tion processing network of schizophrenia patients during cognitive con-
trolmight be considerably different from that of the controls. The results
of group specific BMS (as illustrated in Fig. 1) showed that in the control
group the model that contains the full endogenous connectivity except
interthalamic connection (model 9) is a winner for the endogenous
connection pattern, whereas in the schizophrenia group, model 5 with
lower complexity is the winner model. Thus, jointly activated ROIs
in the controls and patients cannot be sufficiently fitted by the same
model structure, suggesting that the complexity of the endogenous
connectivity pattern in the cognitive control network was decreased in
thepatientswith schizophrenia compared to healthy controls. This result
may already account for the observed abnormal behavioral performance
in the patients. Thus, the present results corroborate the hypothesis of
altered fronto-cingulo-thalamic connectivity in schizophrenia with a
method allowing causal inference about inter-regional interactions and
emphasize the abnormal thalamic connectivity with anterior cingulate
and DLPFC.
Table 3
Voxel-based morphometry (VBM): healthy controls vs. schizophrenia patients (voxel-level: p

Region of decreased white matter in patients Right/left Brodmann's are

Thalamus L
Thalamus R
Anterior cingulate R 8/32
Superior frontal gyrus L 8/9
ReducedWMvolumes were observed bilaterally in themediodorsal
thalamus, in close proximity to the right cingulum and in the left
PFC. Even if we did not observe any significant correlations between
decreased WM and decreased endogenous parameter, this structural
finding provides strong evidence in favor of a structural deficit not
only in the thalamus itself, but also in the fronto-thalamic structural
connectivity in schizophrenia leading to its disordered effective connec-
tivity. The structural deficits seem to be more pronounced in the right
hemisphere, resulting therefore in stronger right-lateralized deficits in
BOLD signal and connection strengths.

4.1. DCM results

Previous studies using DCM did not investigate the fronto-thalamic
effective connectivity in schizophrenia. Instead, these studies aimed to in-
vestigate the fronto-temporal (Crossley et al., 2009), fronto-hippocampal
(Benetti et al., 2009) or fronto-parietal (Deserno et al., 2012) connectivity
during e.g. a workingmemory task and observed consistent disruption in
terms of task-independent and task-dependent connectivities. Due to the
strong connections of the thalamus with the prefrontal, temporo-limbic
and parietal (Yeterian and Pandya, 1985) cortices we can speculate that
these reported dysconnectivitiesmay be the result of an aberrant thalam-
ic input to the frontal and association cortices with abnormal modulation
of their interaction. Assuming that cognitive control regulates a wide
range of cognitive processes, a deficit in its neural basis, namely in the
fronto-cingulo-thalamic circuitry,may result in deficits in different cogni-
tive domains. This has been shown in earlier studies of our group in
schizophrenia that revealed an activation deficit in a fronto-cingulo-
b 0.001, cluster-level: according to expected voxels per cluster, ke = 116).

a Cluster size Talairach coordinate T value

x y z

369 −2 −8 14 4.23
3 −11 9 3.96

261 9 16 32 3.81
191 −15 36 42 4.04



Fig. 4.Morphometric analysis of the white matter. Regions of significant white matter reduction in patients with schizophrenia compared to healthy controls (p b 0.001 uncorr., cluster
size threshold according to the expected number of voxels per cluster, ke = 116).
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thalamic network in association with a working memory task (Schlösser
et al., 2008) as well as in a fronto-cingulate network in association with
learning in the context of a probabilistic learning task (Koch et al.,
2012). Another explanation for the observed deficits might be a primary
deficit in stimulus encoding (Schlösser et al., 2008), which may result
from the abnormal connectivity between primary sensory and higher-
order cortical areas in schizophrenia (Dima et al., 2012). However, in
the present study we did not observe any difference in the connectivity
between V1 and DLPFC in the patients.

An abnormal role of the thalamus in a distributed network of
the cortical–cerebellar–thalamic–cortical circuitry has been postulated
within the framework of “cognitive dysmetria” (Andreasen, 1999),
which accounts for cognitive deficits in various domains and clinical
symptoms. Although we did not model the cerebellum to avoid further
increase of complexity in theDCMmodel, the reduced BOLD fMRI signal
in the cerebellumpoints to its involvement in deficient cognitive control
processes in schizophrenia. Together with the present DCM results this
finding provides further evidence for the concept of cognitive dysmetria
and dysconnectivity in the CCTCC, with the thalamus being the key
structure in this circuitry. Furthermore, negative correlation of reduced
endogenous connectivity between dACC and thalamus with the Stroop
interferences time in the patients points to the special relevance of
cingulo-thalamic connections in the process of conflict resolution.

4.2. VBM results

Due to its prominent connections with the prefrontal cortex
(Goldman-Rakic and Porrino, 1985) and the cerebellum (Middleton
and Strick, 2001) a structural deficit in the mediodorsal nucleus of the
thalamus might be strongly related to the often reported pathology of
the PFC in schizophrenia, resulting in symptoms that potentially mirror
prefrontal cortex functions, such as cognitive control processes.

In this vein, a large amount of literature of postmortem and neuro-
imaging studies has provided evidence for structural abnormalities of
the thalamus. Smaller thalamic volume in schizophrenia was reported
using structural MRI (Andreasen et al., 1990; Byne et al., 2009) and
postmortem studies, the latter of which demonstrated reductions in
neurons of specific thalamic nuclei, such as the MD (Pakkenberg,
1990) and the pulvinar (Byne et al., 2002). However, in a postmortem
study Cullen et al. (2003) failed to find significant differences in the
number of MD neurons. This may indicate that previously reported
volume differences in the thalamus may not only be explained by the
reduced size of neurons or neuropil in the thalamus, but also by the
reduction of the thalamic white matter.

Although previous volumetric studies using ROI tracingmethodology
assessed both gray andwhitematter of the thalamus, direct evidence for
decreased white matter volume has not been provided yet. However,
indirect evidence for potential white matter pathology in the thalamus
comes from studies using Magnetic Resonance Spectroscopy (MRS),
which revealed a decrease of thalamic N-acetylaspartate (NAA)(Deicken
et al., 2000) in the mediodorsal nucleus (Ende et al., 2001) in patients
with schizophrenia indicating neuronal and especially axonal damage
(Moffett et al., 2007). In a postmortem studyByne et al. (2008) suggested
that the observed variations in the number of centromedian thalamic
oligodendrocytes in schizophrenia may reflect variations in the
myelination of axons originating from or passing through the thalamic
nuclei. Furthermore, using diffusion-tensor imaging (DTI) Rose et al.
(2006) demonstrated significantly increased mean diffusivity in PFC,
ACC as well as in the mediodorsal thalamus, which potentially indicates
an increase in the free bulk water due to altered gray and white matter
cytoarchitecture (Kantarci et al., 2001). Mean diffusivity is greater in
the CSF and smaller in the organized brain tissue, which potentially
indicates differences in the intra- and extracellular space and a reduction
in neuropil in schizophrenia (Selemon andGoldman-Rakic, 1999). Taken
together, all these results fit well with our observation of a decreased
white matter volume in the thalamus. Since the thalamus is a structure
that contains a mixture of white and gray matter, correct classification
of its voxels to a particular tissue class can be problematic. In the present
study we used a segmentation approach implemented in the VBM-
toolbox, which employs improved methods to estimate the parameters
of the partial volume effect model to provide amore accurate segmenta-
tion (Tohka et al., 2004). Moreover, the registration between individuals
was improved using the DARTEL algorithm (Ashburner, 2007), resulting
in higher sensitivity to detect group differences.

Previous fronto-thalamic connectivity studies of the white matter
often reported reduced volume or integrity of the anterior internal
capsule (Hulshoff Pol et al., 2004; Wobrock et al., 2008), a structure
that connects the thalamus with ACC and DLPFC and of the anterior
thalamic radiation (Koch et al., 2010). DTI studies reported structural
aberrations of prefrontal- and anterior cingulate–thalamic connections
using tractography (Kunimatsu et al., 2008), fractional anisotropy
(Zou et al., 2008) and mean diffusivity measurements (Rose et al.,
2006). Moreover, in agreement with our findings the main result of a
recent meta-analysis of DTI studies in schizophrenia was decreased
structural integrity in that part of the frontal WM, which is traversed
by white matter tracts interconnecting the PFC, thalamus and ACC
(Ellison-Wright and Bullmore, 2009).

4.3. Thalamus as a critical structure for driving and modulating
cortical activity

Converging lines of evidence from electrophysiological studies
strengthen the notion of abnormal synchronized oscillatory activity of
neurons playing a central role in the pathophysiology of schizophrenia
(Uhlhaas and Singer, 2010). Abnormal gamma power was reported in
the frontal regions during working memory and during cognitive con-
trol, which was related to impaired task performance in the patients
(Cho et al., 2006; Uhlhaas and Singer, 2010). Synchronized neural oscil-
lations are necessary for coordinated activity in the brain as they enable
precise temporal correlations between distant regions and networks.
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The current hypotheses suggest that the vast majority of information
flow between the cortical areas involves higher-order thalamic
nuclei in the form of cortico-thalamo-cortical circuits (Saalmann and
Kastner, 2011; Sherman and Guillery, 2002). Theyel et al. (2010) pro-
vided strong support for this notion observing that inactivation of the
thalamic projection zone shared by two interconnected cortical areas
resulted in a failure of cortico-cortical communication. Higher-order
thalamic nuclei might therefore be crucial for synchronizing and facili-
tating oscillations between distant cortical regions (Saalmann and
Kastner, 2011). Despite being speculative, due to its strong connectivity
to DLPFC and ACC, a deficit in the MD and/or in the connecting white
matter tracts may result in abnormally coordinated activity within
the cognitive control network. The present results of fronto-cingulo-
thalamic dysconnectivity point in this direction.

There are some potential limitations in the current study that should
be considered. The lack of DTI data in the present data may be a poten-
tial limitation. However, even if potentially less sensitive in contrast to
DTI, previous studies on WM volume, e.g. as summarized in the recent
meta-analysis of Bora et al. (2011) were able to detect differences in
WM volume in patients with schizophrenia in the same regions as
revealed by studies using DTI and corresponding parameters of WM
integrity such as fractional anisotropy (FA). Moreover, studies on
healthy subjects provided evidence for an anatomical overlap between
age-related reduction in VBM–WM volume and FA changes, in particu-
lar in the forceps minor, internal and external capsules, cerebral
peduncle and temporal association fibers (Giorgio et al., 2010). Thus,
volumetric analysis of WM using VBM has been shown to be suitable
for detecting differences inWM volume. Furthermore, although param-
eters of DTI anisotropywere considered to reflectmicroscopic anatomy,
spatial resolution obtained byMR–DTI remains at themacroscopic level
(a typical voxel size is around 3 mm). In particular, in structures that
contain a strongmixture of white and graymatter, like in the thalamus,
a less precise measurement of WM integrity has to be expected. This
may be not only due to relatively low resolution used in a typical DTI
study, but also due to the fact, that the tensor model, used to estimate
the anisotropy, cannot describe more than one dominant fiber orienta-
tion. Thus, for voxels containing crossingfibers such as the thalamus the
tensor model may be not appropriate. As illustrated in the study of
Jeurissen et al. (2012) crossing fibers have a clear impact on anisotropy
analysis and therefore the authors consider the diffusion-tensor model
as inadequate for regions with a high degree of crossing fibers. Using a
relatively high resolution of 1 mm3 and an improved segmentation
approach in regard to regions with a strong mixture of white and gray
matter the present VBM analyses of WM are particularly suitable for
the analysis of white matter changes in structures like the thalamus.
Another potential limitation may be the potential negative effects of
long-term treatment with antipsychotics, which are considered to
constitute an important confounder of the brain volume changes in
schizophrenia. With regard to the effect of atypical antipsychotics on
brain structure and function, controlled animal studies have indicated
that haloperidol- as well as olanzapine-treated animals have similar
brain volume reductions, predominantly of the frontal and parietal re-
gions (Dorph-Petersen et al., 2005; Konopaske et al., 2008). However,
in patients with first-episode of schizophrenia, Lieberman et al. (2005)
observed in a randomized, controlled and double-blind study, signifi-
cant decreases in gray matter volume in haloperidol-treated, but not
in olanzapine-treated patients. Moreover, higher dose of olanzapine
and clozapine intake during a 5-year interval was associated with less
decrease in gray matter volume in the dorsolateral prefrontal cortex
(BA9/10) (van Haren et al., 2007). Dazzan et al. (2005), reported
thalamic enlargement after treatment with atypical antipsychotics,
whereas typically treated patients showed reduced volume in the
frontal, anterior cingulate, temporal and parietal regions and increased
volume in the basal ganglia. Furthermore, a recent meta-analysis of 77
studies on schizophrenia (Bora et al., 2011), inwhichmost of the includ-
ed patients were treated with atypical antipsychotics, revealed no
significant effect of antipsychotic use and dose on volume of the white
and gray matter.

Since most studies provide evidence for a neuroprotective effect of
atypical antipsychotics, the potential negative effects (in terms of
reduced volume or reduced BOLD signal in fronto-cingulo-thalamic
network) of long-term treatment with atypical antipsychotics on brain
structure and consequently on brain function can be regarded as negli-
gible. Moreover, the available studies do not provide evidence for a clear
differential effect of atypical antipsychotic drugs on brain structure in
terms of potential neuroprotective effects.

5. Conclusions

Our results suggest that patients with schizophrenia have an ab-
normal fronto-cingulo-thalamic effective connectivity, which might
be the basis of the cognitive control deficit. Moreover, the data indi-
cate that disrupted white matter connectivity in the thalamus and
fronto-thalamic networks may constitute the determining cause of
the fronto-thalamic dysconnectivity. This aberrant neurophysiologi-
cal circuitry may be related to a disruption in synchronized activity,
which is essential for optimal and flexible behavioral performance.

In future studies, attempts should bemade tomore precisely identify
the disrupted white matter tracts in this circuitry using high-resolution
DTI tractography and to relate the extracted parameters to parameters
of effective connectivity and electrophysiological data.
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