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Abstract

Machine learning has become an important tool in precision medicine and aging research. We introduce the cardiovascular auto-
nomic age (CAA) gap, a novel metric quantifying the deviation between machine learning-estimated biological age and chrono-
logical age based on autonomic cardiovascular function. High-resolution electrocardiograms and continuous blood pressure
recordings at rest were collected from 1,060 healthy individuals. From these signals, 29 autonomic indices were derived, includ-
ing time-, frequency-, and symbol-domain heart rate variability, cardiovascular coupling, pulse wave dynamics, and QT interval
features. A Gaussian process regression model was trained on 879 participants to estimate biological age, yielding the CAA.
The deviation between CAA and chronological age defined the CAA gap, which was evaluated in two test sets stratified by car-
diovascular risk (CVR) using the Framingham risk score. At a 0.5% threshold, the high-CVR group showed a markedly increased
CAA gap (þ 11 yr), whereas the low-CVR group demonstrated a slightly negative gap (–1 yr). In the high-risk group, the slope of
predicted versus actual age suggested accelerated physiological aging. CAA correlated positively with the Framingham risk
score (r ¼ 0.42, P < 0.001), and the CAA gap correlated with deviation from normative risk (r ¼ 0.31, P ¼ 0.002). Across thresh-
olds, elevated CAA in the high-CVR group was consistently observed, with moderate effect sizes ranging from 0.32 to 0.46.
These findings suggest that the CAA gap may serve as a sensitive and interpretable indicator of cardiovascular risk and aging,
with potential relevance for early detection and longitudinal assessment.

NEW & NOTEWORTHY The cardiovascular autonomic age (CAA) gap is a new machine learning-based marker that reveals
when the body ages faster than the clock. Using resting-state cardiovascular recordings from 1,000þ participants, we show that
individuals with higher cardiovascular risk exhibit accelerated autonomic aging. The CAA gap could become a sensitive, inter-
pretable tool for early detection and long-term monitoring.

biological aging; cardiovascular risk; Framingham risk score; heart rate variability; precision medicine

INTRODUCTION

Aging profoundly affects cardiovascular health and remains
the leading contributor tomorbidity andmortality worldwide.
Understanding how aging influences cardiac and vascular reg-
ulation is essential for identifying early markers of cardiovas-
cular dysfunction and improving prevention strategies. As
global life expectancy increases, the burden of age-related car-
diovascular diseases, such as hypertension, coronary artery

disease, and heart failure, continues to rise, highlighting the
importance of differentiating healthy from pathological aging
(1). Although chronological age is a major determinant of car-
diovascular risk (CVR), it does not fully capture the biological
variability in how individuals age.

Age-related changes in the cardiovascular system are
widespread, affecting myocardial contractility, diastolic
relaxation, and chronotropic responsiveness, as well as
reducing vascular elasticity and endothelial function (2).
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These structural and functional alterations are accompa-
nied by a shift toward sympathetic dominance and
reduced parasympathetic activity, leading to increased
resting heart rate, blood pressure, and cardiovascular
stress. A decreased sensitivity of vagal reflexes, such as
respiratory sinus arrhythmia, leads to diminished heart
rate variability (HRV) in elderly individuals (3–5). The bar-
oreflex feedback loop decelerating heart rate in response
to rising blood pressure is progressively reduced with age,
contributing to blood pressure variability and adverse car-
diovascular outcomes (6–10). Autonomic imbalance also
affects ventricular repolarization, increasing QT interval
variability and arrhythmic risk (11). Together, these altera-
tions diminish cardiovascular resilience and increase sus-
ceptibility to disease.

Autonomic dysfunction has increasingly been recog-
nized not only as a correlate but also as an early marker of
elevated cardiovascular risk (12). Reduced heart rate vari-
ability (HRV) has been associated with increased all-
cause and cardiac mortality across populations (13–15).
Hillebrand et al. (16) reported that healthy participants
with diminished resting HRV had a 32%–45% higher risk
of experiencing a first cardiovascular event over up to
15 years of follow-up. Independent evidence implicates
sympathetic overactivity in the pathogenesis of hyper-
tension, vascular dysfunction, and adverse cardiovascu-
lar outcomes (17). These findings support the view that
autonomic functional alterations often precede structural
cardiovascular changes and may serve as early, mecha-
nistically informative biomarkers for identifying individ-
uals at heightened cardiovascular risk.

However, conventional cardiovascular risk assessments
such as the Framingham risk score primarily capture cumu-
lative exposure to static risk factors (e.g., cholesterol, blood
pressure, diabetes, and smoking) and do not reflect short-
term physiological adaptability. Based on a cohort of 8,491
Framingham participants, sex-specific risk functions were
derived to estimate 10-yr atherosclerotic cardiovascular risk
(18). Independent studies have confirmed that laboratory
based and body mass index (BMI)-based scores have similar
predictive accuracy for fatal and nonfatal cardiovascular
events (19, 20). Previous research has shown that individuals
in high Framingham risk categories develop cardiovascu-
lar disease about 8–10 years earlier than those at low risk
(18, 21), and obesity-based stratifications predict earlier
onset by 5–10 years (22). Although such risk assessments
effectively capture long-term exposure, incorporating
additional functional autonomic and subclinical markers
may improve the early detection of accelerated cardiovas-
cular aging before overt diseases develop.

Machine learning (ML) can be applied to track age-
related changes in specific organ systems, helping to char-
acterize normal, healthy aging processes and generate indi-
vidualized age estimates. When an individual’s estimated
age, derived from a machine learning model, exceeds their
actual chronological age, it may indicate accelerated aging
and elevated health risk. Such “risk ages” or age equivalents
can enhance communication with patients by presenting
risk in a relatable and understandable way, potentially
improving adherence to lifestyle modifications and phar-
macotherapies (23). Although some age equivalents appear

to be quite common for risk prediction in a clinical context,
the potential of machine learning to enhance, complement,
or outperform them has not been fully leveraged. Existing
markers such as “Heart Age,” “Vascular Age,” “Arterial
Age,” or “Coronary Age” are based on a few specific cardio-
vascular risk factors that are rather easy to assess and used
in clinical routine (18, 24–27).

As a first step toward harnessing the potential of machine
learning, we recently developed a model to estimate age
based on cardiovascular function (28). In total, 29 cardio-
vascular indices were estimated as input features to the
age-prediction model, including heart rate variability,
blood pressure variability, baroreflex function, pulse wave
dynamics, and QT interval characteristics. Four approaches
were tested to estimate the chronological age of healthy
individuals: 1) relevance vector regression, 2) Gaussian pro-
cess regression (GPR), 3) support vector regression, and
4) linear regression. Through a fivefold cross-validation
process, the GPRmodel demonstrated the best performance
in estimating chronological age, achieving a high correla-
tion and a mean absolute error of 5.6 yr. Interestingly, the
estimated age of individuals with obesity (body mass index
> 30 kg/m2) was markedly higher by up to 6 yr on average
compared with normal-weight participants indicating an
advanced cardiovascular aging in this group.

This study investigates whether the prediction error of
the healthy aging ML model (age gap) is associated with
altered cardiovascular risk in these individuals. Using the
Framingham risk score, we estimated 10-years cardiovas-
cular risk in a sample of healthy individuals. We identified
participants with higher and with lower risk compared
with the age- and sex-dependent normative risk. The car-
diovascular autonomic age (CAA) gap was assessed as a
deviation from healthy aging and compared between high-
and low-risk groups.

MATERIALS AND METHODS

Participants

We investigated data of 1,060 healthy individuals
recorded in our laboratory. The majority of datasets have
been made publicly available already (29). None of the
subjects had any history of a neurological or psychiatric
disorder. Exclusion criteria were any medical conditions,
illegal drugs, or medications potentially influencing car-
diovascular function. Thorough physical examination,
resting electrocardiogram, and routine laboratory param-
eters (electrolytes, basic metabolic panel, and blood
count) had to be without any pathological finding. All
participants provided written informed consent before
participating in the study. The study protocol was
approved by the Ethics Committee of the University
Hospital of Jena.

Cardiovascular Risk Estimation

We used the updated Framingham risk calculation model
to predict the 10-yr risk of atherosclerotic cardiovascular dis-
ease, including coronary heart disease, stroke, peripheral vas-
cular disease, and heart failure (18). Cardiovascular risk (CVR)
was estimated based on age, sex, systolic blood pressure
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(SBP), BMI, hypertension or diabetes diagnosis, smoking sta-
tus, and current use of antihypertensivemedications. The cal-
culation algorithm is publicly available at the Framingham
Heart Study website (https://www.framinghamheartstudy.
org/fhs-risk-functions/cardiovascular-disease-10-year-risk/).
CVR estimates range from 0.3% to over 30%, with a practi-
cal upper limit of 98.5%. In addition, normative risk at a
given age can be approximated by assuming an untreated
SBP of 125 mmHg, BMI of 22.5 kg/m2, a nonsmoker and non-
diabetic (18).

Training and Testing Samples

Of the 1,060 individuals in total, 181 participants formed
the testing sets, as they had sufficient information to calcu-
late the Framingham risk score (requiring age between 30 yr
and 74 yr, as well as complete data on smoking status, hyper-
tensive treatment, bodymass index, and diabetes diagnosis).
The remaining 879 individuals (351 men, 528 women; mean
age 31.8 ± 14 yr) were used for training themodel.

Defining Test Samples according to Cardiovascular Risk

According to the Framingham risk score, we separated
participants of the testing sample into high- and low-cardio-
vascular risk groups (high CVR, low CVR). Since no clinically
validated cutoff exists, we applied varying thresholds rela-
tive to the normative population risk. Thresholds ranged
from 0% (where any individual with a risk above the norma-
tive risk was categorized as high CVR, and below as low CVR)
up to 0.6% (where individuals with a risk at least 0.6% higher
or 0.6% lower than the normative risk were classified as high
and low CVR, respectively). We randomly sampled 50 indi-
viduals into both the high- and low-CVR test sets beyond the
threshold (0, 0.4, 0.5, and 0.6%), with the remaining data
used for validation (n ¼ 81). We report in more detail one
exemplary run using 0.5% as a threshold to identify low- and
high-CVR individuals.

Data Acquisition

Continuous noninvasive blood pressure and electrocardio-
gram (ECG) were acquired simultaneously over 20 min using
either a Task ForceMonitor (TFM, CNSystemsMedizintechnik
GmbH, Graz, Austria) or MP150 (BIOPAC Systems Inc., Goleta,
CA). Participants were in a supine position under well-con-
trolled resting conditions in our laboratory. The assessment
took place in a completely quiet and fully shaded room, with a
constant illumination level. Following usual practice, the first
5min were excluded from the analysis.

Feature Extraction

From these signals, we estimated 29 cardiovascular fea-
tures including time, frequency, and symbol domain heart
rate variability, cardiovascular parameters, pulse wave
dynamics, and QT interval characteristics. Mean heart rate,
root mean square of successive beat-to-beat intervals (BBI),
standard deviation of BBI, low- and high-frequency power
and their ratio (30), deceleration capacity (31), R�enyi entropy
with base one fourths (32), sample entropy (33), and com-
pression entropy (34) were derived from BBI time series.
Mean and standard deviation of corrected QT intervals (35)
and the QT variability index were estimated (36). Mean and

standard deviation of systolic and diastolic blood pressure
(DBP) values per heart beat interval were extracted (37).
Pulse pressure was calculated as difference between SBP and
DBP. Using the sequence method, baroreflex sensitivity was
calculated as marker of bradycardic changes due to blood
pressure increases (38). As a spectral method to assess baror-
eflex function, the cardiovascular coherence in the low- and
high-frequency bands was estimated (39). Nonlinear cou-
pling was assessed as the proportion of symmetric symbolic
words from joint symbolic dynamics (40). Mean values and
standard deviation of the pulse transit time, pulse rise time,
pulse wave velocity (41), as well as the average delay of
dicrotic notch to pulse maximum. A full list of cardiovascu-
lar indices is reported in the Supplemental Table S1.

Feature Selection and Scaling

To reduce redundancy and retain only informative fea-
tures, we applied a two-step procedure based on variance
inflation factor (VIF) and Pearson correlation. First, we
iteratively removed variables with a VIF > 10. Second, we
computed pairwise Pearson correlation coefficients among
all remaining features and from each pair with r > 0.8, we
removed the feature that had the higher VIF. This proce-
dure reduced the final feature set to 19 variables. All fea-
tures were then standardized using z-score transformation
(zero mean, unit variance) with the StandardScaler from
scikit-learn, fitted on the training set and applied to all
testing data to ensure consistent scaling and prevent data
leakage.

Cardiovascular Autonomic Age Estimation

We applied machine learning to estimate effects of healthy
cardiovascular aging based on 19 cardiovascular autonomic
indices. The CAA gap represents the deviation between the
estimated age from this model and people’s chronological age.
A positive age gap indicates advanced aging relative to one’s
chronological age, whereas a negative gap suggests delayed
aging processes. A GPRmodel with a squared exponential ker-
nel radial basis function (RBF) and a constant basis function
was applied and derived from our existing model (28).
Hyperparameters were optimized by grid search with cross-
validation during training the model (GridSearchCV), result-
ing in a constant kernel variance of 1.1, an RBF length scale of
4.1, and a noise level of a ¼ 0.13. The final model was imple-
mented with normalization of the output variable and 10 opti-
mizer restarts to ensure stability.

We corrected the model output for a potential linear
dependency of the estimated on the chronological age (age
bias) by fitting a linear regression model in the validation
sample (42). The age predictions in the high- and low-CVR
groups were corrected for that bias using the estimated slope
and intercept (43).

Feature Importance

To identify the most influential cardiovascular features
contributing to the age predictions, we used the SHapley
Additive exPlanation (SHAP) algorithm (44). SHAP analysis
was performed in the entire test set of 181 healthy controls.
Absolute SHAP values were extracted using a KernelExplainer
and averaged to evaluate importance of each input feature.
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Statistical Analysis

Differences between estimated age and chronological age
were compared between participants with low and high
CVR, using varying thresholds relative to the normative risk
(0, 0.4, 0.5, and 0.6%). For each threshold, we randomly
sampled n¼ 50 individuals meeting the respective risk crite-
rion. This procedure was repeated 50 times to assess Cohen’s
d effect sizes (45) as a function of the applied threshold.

For one run using a threshold of 0.5%, we additionally
report descriptive characteristics of the groups as well as the
CAA gap. The association between the CAA and Framingham
risk score across both test groups was examined using Pearson
correlation. Comparisons of individual risk factors were per-
formed with independent t tests for continuous variables and
v2 tests for dichotomous variables.

The accuracy of age estimation was assessed in the valida-
tion sample using mean absolute error (MAE) and root mean
squared error (RMSE).

RESULTS

A total of 29 parameters were extracted from resting
recordings of noninvasive continuous blood pressure record-
ings and high-resolution electrocardiograms of each subject.
After feature selection, 19 features were fed into a GPRmodel
to estimate cardiovascular age (see Fig. 1).

In the validation sample, the model demonstrated a high
concordance with chronological age, achieving a MAE ¼
6.04 yr and a RMSE ¼ 8.97 yr. To identify the key contribu-
tors to age estimation, we calculated SHAP values (see
Fig. 2). The most important features were pulse reflection
time, pulse transit time, baroreflex sensitivity, and mean
heart rate.

Age Estimates in Participants with Low- and High-
Cardiovascular Risk

The Gaussian process framework was used to estimate the
CAA gap as a deviation fromnormal healthy aging. Themodel

was trained on 879 individuals and applied to two groups: 1)
healthy participants with high CVR and 2) those with low
CVR. In this example, a threshold of 5% deviation from the
normative risk was used to define high CVR (individual risk
>5% above normative risk) and low CVR (individual risk>5%
below normative risk). The characteristics of both groups are
summarized in Table 1. As expected, the Framingham risk
score was significantly higher in the high-CVR group, whereas
normative risk estimates remained similar between the two
groups. The high-CVR group had a higher prevalence of
smokers and a higher BMI as well as increased SBP compared
with the low CVR group. In contrast, self-reported exercise
levels and the presence of depressive symptoms did not differ
significantly between the groups.

High-CVR individuals had a significantly higher CAA gap
(þ 11.1 ± 14.4 yr) compared with low-CVR group (�0.9± 15.7
yr, P ¼ 0.0003; Fig. 3, A and B). In the low-CVR group, cardi-
ovascular age estimates closely tracked chronological age,
with a near-unity regression slope (m ¼ 0.94) and a slight
positive offset (intercept ¼ 2.3 yr). In contrast, the high-CVR
group exhibited a steeper slope (m ¼ 1.26) and a slight nega-
tive offset (intercept ¼ �2.4 yr), consistent with accelerated
aging, although the difference between slopes was not statis-
tically significant (P¼ 0.178).

Effect size analysis across varying thresholds for defining
high versus low CVR showed robust group differences, with
average Cohen’s d values ranging from 0.32 to 0.46 (Fig. 3C).
The CAA across both groups was positively correlated with
the Framingham risk score (r ¼ 0.42, P < 0.001; Fig. 3D). In
addition, the CAA gap was correlated with the deviation of
an individual’s Framingham risk score from normative risk
(r¼ 0.31, P¼ 0.002; Fig. 3E).

DISCUSSION

Artificial intelligence has become an integral part of daily
life, andmachine learning (ML) is set to transform themedical
and healthcare industries (46, 47). ML offers significant oppor-
tunities to enhance risk stratification, diagnostic classification,

Figure 1. The framework for cardiovascular autonomic age gap estimation based on cardiovascular data. In total, 29 indices were extracted from resting
recordings of blood pressure and electrocardiograms. Nineteen meaningful features were used as input to the model. Machine learning (Gaussian pro-
cess regression model) was used to estimate age on the basis of these indices. The relation of estimated age and chronological age is depicted on the
right side. The cardiovascular autonomic age gap is the difference between estimated and chronological age.
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and patient subgroup identification, among other applications
(48). One notable application of ML is the quantification of
aging effects based on biological data, which has provided
insights into the aging processes of different organ systems
(49–51). Research suggests that these biological markers that
track the aging process, the “aging clocks,” progress at individ-
ual rates, which makes them a promising tool for precision
medicine (52, 53).

In this study, we propose an ML-based framework to eval-
uate aging effects on cardiovascular autonomic regulation
using a comprehensive set of biomarkers. CAA quantifies the

deviation between ML-predicted age and chronological age,
providing insights into cardiovascular aging. We tested vari-
ous ML algorithms to estimate age based on cardiovascular
features (28), with the GPR model emerging as the most
accurate approach in a large cohort of healthy individuals.
Here, we assess the potential of thismodel to indicate cardio-
vascular risk bymeasuring deviations from the healthy aging
trajectory.

Using deep learning, Attia et al. (54), and Strodthoff et al.
(55) estimated chronological age based on short 12-lead ECG
signals both achieving an MAE of 6.9 years. Attia et al. (54)
reported that those patients, whose predicted age was >7 yr
higher than their chronological age, were more likely to be
diagnosed on follow-up with cardiovascular diseases such as
hypertension and coronary disease. Similarly, Lima et al.
(56) used deep neural networks to estimate age based on raw
ECG traces with an MAE of 8–10 yr. In their study, individu-
als whose estimated age exceeded their chronological age
by>8 yr had significantly higher mortality risk. Deep neural
networks enable fully automated analysis by using raw ECG
signals as input and autonomously learning to extract rele-
vant features, thereby eliminating the need for manual pre-
processing or feature engineering. Deep learning approaches
can capture complex nonlinear relationships between cardi-
ovascular endpoints and risk. However, their “black-box”
nature and high data requirements may limit clinical inter-
pretability and generalizability (57). Ensemblemethods such
as random forests or XGBoost similarly offer strong nonlin-
ear modeling capabilities and robust performance on tabular
data but tend to require larger datasets and provide less
straightforward physiological interpretability (58, 59). In
contrast, GPR provides robust predictions even in relatively

Figure 2. Averaged absolute SHAP values of cardiovascular autonomic features that were fed into the age estimation model. SHAP, SHapley Additive
exPlanation.

Table 1. Cardiovascular risk factors in the low- and high-
risk groups using a deviation of 0.5% from normative risk
as threshold

Factors

Low CVR

(n 5 50)

High CVR

(n 5 50) P Value

Age, yr 51.3 ± 13.8 52.6 ± 12.3 0.620
Sex, m/w 34%/66% 52%/48% 0.069
Systolic blood pressure, mmHg 104.6 ± 10.2 132.7 ± 16.9 <0.001
Body mass index, kg/m2 23.6 ± 2.9 26.8 ± 3.9 <0.001
Smoker, yes/no 0%/100% 26%/74% <0.001
Framingham risk score, % 5.17 ± 4.73 12.62 ± 8.09 <0.001
Framingham normative risk, % 7.29 ± 5.67 8.01 ± 5.52 0.522
Regular exercise, yes/no 74%/26% 72%/28% 0.822
1–2 h/wk 40% 38%
3–4 h/wk 28% 24%
5–6 h/wk 0% 10%
>6 h/wk 6% 0%

Depressive symptoms (BDI score) 5.0 ± 5.9 4.3 ± 4.9 0.213

The sample size was fixed at n ¼ 50 per group. P values were
obtained from t tests for continuous variables or v2 tests for dichoto-
mous variables; data are presented as mean ± standard deviation.
BDI, Beck Depression Inventory.
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small cohorts due to its smooth functional form and inher-
ent ability to quantify predictive uncertainty (60, 61).

Although these studies highlight ML’s potential for cardio-
vascular risk assessment through age estimation, our approach
extends this concept by enabling the model to learn from a
broader physiological basis. Specifically, we incorporate vascu-
lar indices and measures of cardiovascular coupling, which
are highly sensitive to aging-related changes. With aging, even
in the absence of disease, large elastic arteries such as the aorta
and carotid arteries become stiffer in both humans and animal
models. Stiffening of arterial walls, containing baroreceptors,
may compromise their sensory function, hindering the barore-
flexmechanism (62).

Notably, the three most influential features in chronologi-
cal age prediction were 1) the pulse reflection time, 2) pulse
transit time, and 3) baroreflex sensitivity. All these parame-
ters are closely linked to arterial stiffness, which progres-
sively accelerates pulsatile blood flow with increasing age
(63). Although these indicators were particularly relevant for
the age estimationmodel, diastolic blood pressure and pulse
pressure had a comparatively lower impact, even though it is
a widely used risk marker and contributed to CVR assess-
ment in our study using the Framingham algorithm.

The average CAA gap indicated that healthy individu-
als with high CVR appeared from a cardiovascular per-
spective 11 yr older than expected. In contrast, the low-
CVR group had a negative CAA gap of 1 yr, suggesting
advanced cardiovascular autonomic aging in those at
increased risk for cardiovascular events. In the low-CVR
group, the linear fit had a slope of less than one, meaning
the estimated age increased by <1 yr for every additional
year of chronological age. The decelerated aging might be
due to better overall cardiovascular health persisting over

a lifetime. Conversely, the high-CVR group showed a
steeper slope (1.3), suggesting accelerated aging proc-
esses, with CAA increasing by 1.3 yr for every additional
year of chronological age.

Previous research has demonstrated that individuals with
elevated Framingham risk scores or obesity-related risk
stratifications typically experience cardiovascular disease
onset 5–10 yr earlier than those at low risk (18, 22). In this
context, the observed CAA gap of approximately 11 yr in the
high-risk group may reflect a comparable temporal shift in
cardiovascular aging, indicating that autonomic dysregula-
tion captured by the CAA gap could precede clinically mani-
fest disease by several years. The derived CAAmight serve as
a comprehensive measure of autonomic status and as an
independent riskmarker that is easy to interpret. This is sim-
ilar to “vascular age” which has been described as clear and
easy to understand by patients rather than an abstract math-
ematical construct (64). It has been demonstrated that using
intelligible risk markers can motivate a population to adopt
healthier lifestyles and improve CVR. Lopez-Gonzalez et al.
(65) have shown in a randomized clinical trial of 3,000 sub-
jects that expressing cardiovascular risk in terms of years of
age (“heart age”) leads to decreases in risk scores including
BMI reductions, compared with the use of traditional per-
centage-basedmarkers.

The CAA gap differs fundamentally from established
markers like heart age and vascular age, which are typically
based on long-term risk factors or imaging of structural
changes (e.g., coronary artery calcium and carotid intima-
media thickness). Vascular age, for example, can be derived
either from population-based imaging norms or from risk
models calibrated to structural data (Groenewegen et al. 27).
In contrast, the CAA gap relies on short-term cardiovascular

Figure 3. The cardiovascular autonomic age (CAA) gap of participants with high cardiovascular risk (high CVR) and low cardiovascular risk (low CVR) as
assessed by a Framingham risk score of ±0.5% above and below normative risk. The sample size was fixed at n ¼ 50 per group. P values and effect
sizes were obtained from t tests. A: CAA in the high-CVR group (red) and low-CVR group (green) as a function of chronological age. Shaded areas repre-
sent the standard deviation of data points from the linear fit. B: mean CAA gap in high- and low-CVR groups. On average, high-risk participants showed
an increased CAA gap of þ 11.1 years, whereas low-risk participants showed a mean CAA gap of�0.9 yr. C: distribution of Cohen’s d effect sizes for the
CAA gap comparison between risk groups across different thresholds used to define low and high CVR. D: scatter plot of the CAA gap vs. Framingham
risk score, showing a positive correlation across participants. E: scatter plot of the CAA gap vs. deviation from normative risk, also showing a positive
correlation.
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time series data and reflects functional autonomic regula-
tion, rather than structural damage or cumulative risk
exposure. This makes it highly sensitive to early, possibly
reversible dysregulation that established risk models may
miss, especially in younger individuals. Furthermore, CAA
can be estimated at rest, noninvasively and without the
need for bloodwork or imaging. Since it can be obtained
from physiological recordings, the method could, in prin-
ciple, be implemented using wearable or ambulatory devi-
ces for repeated assessments of cardiovascular function
over time.

Our study has several limitations that need to be noted.
Although we investigated over a thousand subjects, espe-
cially at older ages, a rather small amount of data was avail-
able. Especially, as the Framingham risk score is validated in
an age >30 yr of age, balancing age distribution of the train-
ing and the test sets was not possible. However, recruitment
of participants of an advanced age without suffering from
cardiovascular, neurological, or psychiatric disorder is very
complicated. Furthermore, cognitive impairment, sensory
loss, and changes in mobility might introduce a selection
bias in our study. Although cardiovascular and autonomic
aging are known to follow nonlinear trajectories, these
inflection points may not be detectable in our results due to
the smoothing nature of the GPR model and the limited
number of subjects. Longitudinal studies are required in the
future to track progression of CAA alongside chronological
aging. Finally, the present study is limited by the absence of
follow-up data on cardiovascular morbidity and mortality,
which would provide the most direct evidence of the prog-
nostic value of the CAA gap.
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