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ABSTRACT

Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's
disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for con-
version to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting
the MCI-to-AD conversion from one to three years before the clinical diagnosis. First, we developed a novel MRI
biomarker of MCI-to-AD conversion using semi-supervised learning and then integrated it with age and cognitive
measures about the subjects using a supervised learning algorithm resulting in what we call the aggregate
biomarker. The novel characteristics of the methods for learning the biomarkers are as follows: 1) We used a
semi-supervised learning method (low density separation) for the construction of MRI biomarker as opposed
to more typical supervised methods; 2) We performed a feature selection on MRI data from AD subjects and
normal controls without using data from MCI subjects via regularized logistic regression; 3) We removed the
aging effects from the MRI data before the classifier training to prevent possible confounding between AD and
age related atrophies; and 4) We constructed the aggregate biomarker by first learning a separate MRI biomarker
and then combining it with age and cognitive measures about the MCI subjects at the baseline by applying a ran-
dom forest classifier. We experimentally demonstrated the added value of these novel characteristics in
predicting the MCI-to-AD conversion on data obtained from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) database. With the ADNI data, the MRI biomarker achieved a 10-fold cross-validated area under the
receiver operating characteristic curve (AUC) of 0.7661 in discriminating progressive MCI patients (pMCI)
from stable MCI patients (sMCI). Our aggregate biomarker based on MRI data together with baseline cognitive
measurements and age achieved a 10-fold cross-validated AUC score of 0.9020 in discriminating pMCI from
SMCL The results presented in this study demonstrate the potential of the suggested approach for early AD diag-
nosis and an important role of MRI in the MCI-to-AD conversion prediction. However, it is evident based on our
results that combining MRI data with cognitive test results improved the accuracy of the MCI-to-AD conversion
prediction.

© 2014 Elsevier Inc. All rights reserved.

Introduction

dramatic increase in the prevalence of AD, the identification of effective
biomarkers for the early diagnosis and treatment of AD in individuals at

Alzheimer's disease (AD), a common form of dementia, occurs most
frequently in aged population. More than 30 million people worldwide
suffer from AD and, due to the increasing life expectancy, this number is
expected to triple by 2050 (Barnes and Yaffe, 2011). Because of the
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high risk to develop the disease is crucial. Mild cognitive impairment
(MCI) is a transitional stage between age-related cognitive decline and
AD, and the earliest clinically detectable stage of progression towards
dementia or AD (Markesbery, 2010). According to previous studies
(Petersen et al., 2009), a significant proportion of MCI patients, approx-
imately 10% to 15% from referral sources such as memory clinics and AD
centers, will develop into AD annually. AD is characterized by the forma-
tion of intracellular neurofibrillary tangles and extracellular 3-amyloid
plaques as well as extensive synaptic loss and neuronal death (atrophy)
within the brain (Mosconi et al., 2007). The progression of the neuropa-
thology in AD can be observed many years before clinical symptoms of
the disease become apparent (Braak and Braak, 1996; Delacourte et al.,
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Table 1

Semi-supervised classification of AD using ADNI database. AUC: area under the receiver operating characteristic curve, ACC: accuracy, SEN: sensitivity, SPE: specificity.

Author Data Task Result (supervised) Result (semi-supervised)
Ye et al. (2011) MRI, sMCI vs. pMCI AUC = 71% AUC = 73%
53 AD, 63 NC, ACC = 55.3% ACC = 56.1%
237 Mdl SEN = 88.2% SEN = 94.1%
SPE = 42% SPE = 40.8%
Filipovych and Davatzikos (2011) MR, sMCI vs. pMCI AUC = 61% AUC = 69%
54 AD, 63 NC, SEN = 78.8% SEN = 79.4%
242 Ml SPE = 51% SPE = 51.7%
Zhang and Shen (2011) MRI, PET, CSF AD vs. NC AUC = 94.6% AUC = 98.5%
51 AD, 52 NC,
99 McI
Batmanghelich et al. (2011) MR, sMCI vs. pMCI AUC = 61.5% AUC = 68%
54 AD, 63 NC,
238 MCI

1999; Morris et al., 1996; Serrano-Pozo et al.,, 2011; Mosconi et al.,
2007). AD pathology has been therefore hypothesized to be detectable
using neuroimaging techniques (Markesbery, 2010). Among different
neuroimaging modalities, MRI has attracted a significant interest in
AD related studies because of its completely non-invasive nature, high
availability, high spatial resolution and good contrast between different
soft tissues. Over the past few years, numerous MRI biomarkers have
been proposed in classifying AD patients in different disease stages
(Fan et al., 2008; Duchesne et al., 2008; Chupin et al., 2009; Querbes
et al., 2009; Wolz et al., 2011; Hinrichs et al., 2011; Westman et al.,
2011a,b; Westman et al., 2012; Cho et al.,, 2012; Coupé et al., 2012;
Gray et al., 2013; Eskildsen et al., 2013; Guerrero et al., 2014; Wang
et al., 2014). Despite of many efforts, identifying efficient AD-specific
biomarkers for the early diagnosis and prediction of disease progression
is still challenging and requires more research.

In the current study, we present a novel MRI-based technique for the
early detection of AD conversion in MCI patients by using advanced ma-
chine learning algorithms and combining MRI data with standard neu-
ropsychological test results. In more detail, we aim to predict whether
an MCI patient will convert to AD over a 3 year period (this is referred
as progressive MCI or pMCI) or not (this is referred as stable MCI or
sMCI) using only data at the baseline. The data used in this work is
obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (www.loni.usc.edu/ADNI) and it includes MRI scans and neu-
ropsychological test results from normal controls (NC), AD, and MCI
subjects with a matched age range. Recently, several computational
neuroimaging studies have focused on predicting the conversion to
AD in MCI patients by utilizing various types of ADNI data such as MRI
(e.g. Ye et al,, 2011; Filipovych and Davatzikos, 2011; Batmanghelich
et al., 2011), positron emission tomography (PET) (Zhang and Shen,
2011, 2012; Cheng et al., 2012; Shaffer et al., 2013), cerebrospinal
fluid (CSF) biomarkers (Zhang and Shen, 2011; Cheng et al., 2012;
Davatzikos et al., 2011; Shaffer et al., 2013), and demographic and
cognitive information (see Tables 1 and 7). Our method is a multi-step
procedure combining several ideas into a coherent framework for AD
conversion prediction:

1. Semi-supervised learning, using data from AD and NC subjects to
help the sMCI/pMCI classification

2. Novel random forest based data integration scheme

3. Removal of age related confound.

In the experimental sections we will demonstrate that all these
provide a significant contribution towards the accuracy of the combined
prediction model. Our method differs in the following aspects from
earlier studies.

Most of the earlier studies were based on supervised learning
methods, where only labeled data samples are used for learning the
model. Semi-supervised learning (SSL) approaches are able to use unla-
beled data in conjunction with labeled data in a learning procedure for
improving the classification performance. The great interest in SSL

techniques over the past few years (Zhu, and Goldberg, 2009) is related
to the wide spread of application domains where providing labeled data
is hard and expensive compared to providing unlabeled data. The prob-
lem studied in this work, predicting the AD-conversion in MCI subjects,
is a good example of this scenario since MCI subjects have to be followed
for several years after the data acquisition to obtain a sufficiently
reliable disease label (pMCI or sMCI). Few recent studies (listed in
Table 1) have investigated the use of different semi-supervised ap-
proaches for diagnosis of AD in different stages of the disease. In
Zhang and Shen (2011), MCI subjects' data were used as unlabeled
data to improve the classification performance in discriminating AD
versus NC subjects. They achieved a significant improvement, the AUC
score increased from 0.946 to 0.985, which is high for discriminating
AD vs. NC subjects. Ye et al. (2011), Filipovych and Davatzikos (2011),
and Batmanghelich et al. (2011) used AD and NC subjects as labeled
data and MCI subjects as unlabeled data and predicted disease-labels
for the MCI subjects. In all these studies, the improvement in the predic-
tive performance of the model was significant over supervised learning.
The best classification performance in discriminating sMCI versus pMCI
using only MRI data was achieved by Ye et al. (2011) with the area
under the receiver operating characteristic curve (AUC) equal to 0.73
for prediction of conversion within 0-18 month period. We hypothe-
size that the classification performance of semi-supervised learning
approaches could be improved if MCI subjects who have been followed
up for long enough would be used as labeled data. In this work, we
develop a semi-supervised classifier for AD conversion prediction in
MCI patients based on low density separation (LDS) (Chapelle and
Zien, 2005) and by using MRI data of MCI subjects. Our results demon-
strate applicability of the proposed semi-supervised method in MRI
based AD conversion prediction in MCI patients by achieving a signifi-
cant improvement compared to a state of the art supervised method
(support vector machine (SVM)).

We perform two processing steps in between our voxel based mor-
phometry style preprocessing (Gaser et al., 2013) and the learning of
the LDS classifier. First, we remove age-related effects from MRI data
before training the classifier to prevent the confounding between AD
and age-related effects to brain anatomy. Previously, a similar technique
has been used for the classification between AD and NC subjects, but
this study has not considered AD-conversion prediction in MCI subjects
(Dukart et al., 2011). In addition, the impact of age was studied recently
for detecting AD (Coupé et al., 2012) as well as for predicting AD in MCI
patients (Eskildsen et al., 2013). Second, we perform feature selection
on MRI data independently of the classification procedure using the
auxiliary data from AD and NC subjects. Feature selection is an essential
part of the combined procedure since the number of features (29,852)
available after the image preprocessing significantly exceeds the
number of subjects. We assume that AD vs. NC classification is a simpli-
fied version of the pMCI vs. sMCI and the same features that are most
useful for the simple problem are useful for the complex one. This idea
is implemented by applying regularized logistic regression (RLR)
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(Friedman et al., 2010) on MRI data of AD and NC subjects for finding
the image voxels that are best discriminated between AD and NC
subjects. Next, we use these selected voxels for predicting conversion
to AD within MCI patients. Most of existing studies incorporating
feature selection rely only on a dataset of MCI subjects by using it for
feature selection and classification task. In particular, previous studies
(Ye et al., 2011, 2012; JanouSova et al., 2012) have considered feature
selection based on RLR for MCI-to-AD conversion prediction, but the
feature selection was performed with the data from MCI subjects not
utilizing data from AD and NC subjects. Auxiliary data from AD and NC
subjects to aid the classification of MCI subjects have been considered
by Cheng et al. (2012) in a domain transfer learning method. Briefly,
the method utilizes cross-domain kernel build from target data (MCI
subjects) and auxiliary data (AD and NC) subjects to learn a linear
support vector machine classifier. As Cheng et al. reduced the number
of features to 93 by partitioning each MRI into 93 regions of interest
and did not consider feature selection, the approach to use the auxiliary
data is different from our approach.

We integrate MRI data with age and cognitive measurements, also
acquired at the baseline, for improving the predictive performance of
MCI-to-AD conversion. As opposed to several other studies combining
MRI with other types of data (Davatzikos et al., 2011; Zhang and Shen,
2012; Shaffer et al,, 2013; Cheng et al., 2012; Wang et al., 2013), we pur-
posely avoid using CSF or PET based biomarkers, the former because it
requires lumbar puncture, which is invasive and potentially painful for
the patient, and the latter because of its limited availability compared
to MRI, as well as its cost and radiation exposure (Musiek et al., 2012).
Previously, the combination of MRI derived information and cognitive
measurements has been considered by Ye et al. (2012) who trained an
RLR classifier with standard cognitive measurements and volumes of
certain regions of interest as features and Casanova et al. (2013) who
combined outputs of two classifiers, one trained based on MRI and the
other trained based on cognitive measurements, based on a sum-rule
for the classifier combination. In order to use more efficiently MRI and
basic (age and cognitive) measures, we develop what we call an aggre-
gate biomarker by utilizing two different classifiers, i.e. LDS and random
forest (RF), in different stages of the process. We first derive a single real
valued biomarker based on MRI data using LDS (our biomarker) and
thereafter use this as a feature for the aggregate classifier (RF). We
will highlight the importance of using a transductive classifier
(e.g., LDS) instead of an inductive one (e.g., a standard SVM) during
the first stage of the learning process and provide evidence of the effec-
tiveness of the aggregate biomarker for the AD conversion prediction in
MCI patients based on MRI, age and cognitive measures at the baseline.

Materials and methods
ADNI data

Data used in this work is obtained from the Alzheimer's Disease Neu-
roimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). The
ADNI was launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceuti-
cal companies and non-profit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the progres-
sion of MCI and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The principal investigator of this initiative is Michael W. Weiner, MD,
VA Medical Center and University of California — San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed
by ADNI-GO and ADNI-2.

To date these three protocols have recruited over 1500 adults, ages
55 to 90, to participate in the research, consisting of cognitively normal
older individuals, people with early or late MCI, and people with early
AD. The follow-up duration of each group is specified in the protocols
for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for
ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For
up-to-date information, see www.adni-info.org.

Data used in this work include all subjects for whom baseline MRI data
(T1-weighted MP-RAGE sequence at 1.5 T, typically 256 x 256 x 170 voxels
with the voxel size of approximately 1 mm x 1 mm x 1.2 mm), at least
moderately confident diagnoses (i.e. confidence > 2), hippocampus vol-
umes (i.e. volumes of left and right hippocampi, calculated by FreeSurfer
Version 4.3), and test scores in certain cognitive scales (i.e. ADAS:
Alzheimer's Disease Assessment Scale, range 0-85; CDR-SB: Clinical
Dementia Rating ‘sum of boxes’, range 0-18; MMSE: Mini-Mental State Ex-
amination, range 0-30) were available.

For the diagnostic classification at baseline, 825 subjects were
grouped as (i) AD (Alzheimer's disease), if diagnosis was Alzheimer's
disease at baseline (n = 200); (ii) NC (normal cognitive), if diagnosis
was normal at baseline (n = 231); (iii) sMCI (stable MCI), if diagnosis
was MCI at all available time points (0-96 months), but at least for
36 months (n = 100); (iv) pMCI (progressive MCI), if diagnosis was
MCI at baseline but conversion to AD was reported after baseline within
1, 2 or 3 years, and without reversion to MCI or NC at any available
follow-up (0-96 months) (n = 164); (v) uMCI (unknown MCI), if diag-
nosis was MCI at baseline but the subjects were missing a diagnosis at
36 months from the baseline or the diagnosis was not stable at all avail-
able time points (n = 100). From 164 pMCI subjects, 68 subjects were
converted to AD within the first 12 months, 69 subjects were converted
to AD between 12 and 24 months of follow-up and the remaining 27
subjects were converted to AD between 24 and 36 month follow-up.
Details of the characteristics of the ADNI sample used in this work are
presented in Table 2. The subject IDs together with the group informa-
tion is provided in the supplement (Tables S2 - S5, see also https://
sites.google.com/site/machinelearning4mcitoad/ for MATLAB files).
The conversion data was downloaded on April 2014.

Image preprocessing

As described in Gaser et al. (2013), preprocessing of the T1-weighted
images was performed using the SPM8 package (http://www fil.ion.ucl.
ac.uk/spm) and the VBMS toolbox (http://dbm.neuro.uni-jena.de), run-
ning under MATLAB. All T1-weighted images were corrected for bias-field
inhomogeneities, then spatially normalized and segmented into gray
matter (GM), white matter, and cerebrospinal fluid (CSF) within the
same generative model (Ashburner and Friston, 2005). The segmenta-
tion procedure was further extended by accounting for partial volume
effects (Tohka et al., 2004), by applying adaptive maximum a posteriori
estimations (Rajapakse et al., 1997), and by using an hidden Markov
random field model (Cuadra et al., 2005) as described previously
(Gaser, 2009). This procedure resulted in maps of tissue fractions of
WM and GM. Only the GM images were used in this work. Following

Table 2

Characteristics of datasets used in this work. There was no statistically significant differ-
ence in age (permutation test, p > 0.05) nor gender (proportion test, p > 0.05) between
different MCI groups.

AD NC pMCI sMCI uMCI
No. of subjects 200 231 164 100 130
Males/females 103/97 119/112 97/67 66/34 130/81
Age range 55-91 59-90 55-89 57-89 54-90
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Fig. 1. Semi-supervised classification scheme. Dashed arrows indicate data fed to classification process without any label information (in contrast to solid arrows indicating training data
with label information). The test subset is used in the classification process without any label information.

the pipeline proposed by Franke et al. (2010), the GM images were
processed with affine registration and smoothed with 8-mm full-
width-at-half-maximum smoothing kernels. After smoothing, images
were resampled to 4 mm isotropic spatial resolution. This procedure
generated, for each subject, 29,852 aligned and smoothed GM density
values that were used as MRI features.

MRI biomarker

As a preprocessing operation, we removed the effects of normal
aging from the MRI data. The rationale for this is related to the fact
that the effects of normal aging on the brain are likely to be similar
(equally directed) with the effects of AD, which can lead to an overlap
between the brain atrophies caused by age and AD. This, in turn,
would bring a possible confounding effect on the estimation of
disease-specific differences (Franke et al., 2010; Dukart et al., 2011).
We estimated the age-related effects on the GM densities of NC subjects
by using a linear regression model that is similar to a method applied in
earlier studies (Dukart et al., 2011; Scahill et al., 2003). Once estimated,
the age-related effects were removed from the MRI data of each subject
before training the classifiers. For more details, see the algorithmic
description in Appendix B.

The overall structure of the proposed classification method is illus-
trated in Fig. 1. The method consists of two fundamental stages: a fea-
ture selection stage, that uses a regularized logistic regression (RLR)
algorithm to select a good subset of MRI voxels for AD conversion
prediction; and a classification stage that applies a semi-supervised
low density separation (LDS) method to produce the final prediction.
The LDS relies on a transductive support vector machine classifier,
whose hyperparameters are also learned from the data. Note that, for
each test subject, instead of the discrete class, an LDS returns the value
of the continuous discriminant function d € R that we call MRI biomark-
er. If d < 0 then the subject is predicted as sMCI and otherwise pMCI;
more details are presented in Appendix A.

More specifically, the first stage of the classification framework
selects the most informative voxels (features) among all MRI voxels
(features) while discarding non-informative ones. The feature selection
uses the regularized logistic regression framework (Friedman et al.,
2010) that produces a path of feature subsets with different cardinalities
(called regularization path), and has been used widely in previous works

(Huttunen et al., 2012, 2013; Ryali et al., 2010) for the multi-voxel pat-
tern analyses of functional neuroimaging data as well as for AD related
studies using structural MRI data (Ye et al., 2012; Casanova et al.,
2011a,b,2012; Shen et al., 2011; JanouSova et al., 2012). As the RLR pro-
cedure is a supervised learning method, the input has to be fully labeled
data. To this aim, we applied RLR on MRI data of AD and NC subjects for
determining a subset of features (voxels) with the highest accuracy in
discriminating the two classes. The selected voxels (and only them)
were then used for predicting conversion to AD in MCI patients. Note
that this way we avoided using data about MCI subjects for feature
selection and therefore we can use all the MCI data for learning the clas-
sifier. The cardinality of the selected subset along the regularization
path was determined using 10-fold cross validation, which estimated
the most discriminative subset among the candidates found by the
RLR. The details of the RLR approach are described in Appendix B.

The second stage trains the final semi-supervised LDS classifier. At
this stage, also the unlabeled uMCI samples were fed to the classifier,
after the extraction of the most discriminative features. Since the
LDS approach is based on the transductive SVM classifier, also the
hyperparameters of the transductive SVM have to be selected. The
choice of the SVM parameters was done using a nested cross validation
approach, where each of the cross validation splits of the feature selec-
tion stage was further split into second level of 10 cross validation folds.
In this way we were able to estimate the performance of the complete
framework and simulate the final training process with all data after
the hyperparameters have been selected.

The LDS approach for semi-supervised learning (see Appendix A and
Chapelle and Zien, 2005) integrates unlabeled data into the training
procedure. The algorithm assumes that the classes (e.g., pMCI and
sMCI subjects) form high density clusters in the feature space, and
that there are low density areas between the classes. This way the
labeled samples determine the rough shape of the decision rule, while
the unlabeled samples fine-tune the decision rule to improve the
performance. A typical gain due to integrating unlabeled data varies
from a few percent to manifold decrease in prediction error. The LDS
is a two step algorithm, which first derives a graph-distance kernel for
enhancing the cluster separability and then it applies transductive
support vector machine (TSVM) for classifier learning. SSL methods pre-
viously applied to MCI-to-AD conversion prediction have included
TSVM (Filipovych and Davatzikos, 2011) and Laplacian SVM (Ye et al.,
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2011). Based on experimental results by Chapelle and Zien (2005), LDS
can be seen as an improved version of TSVM and related to Laplacian
SVM. Moreover, we have provided evidence that the LDS overperforms
the semi-supervised discriminant analysis (Cai et al., 2007) in MCI-to-
AD conversion prediction in our recent conference paper (Moradi
etal., 2014). Finally, we note that as the majority of the semi-supervised
classifiers including TSVMs, LDS applies transductive learning, practical-
ly meaning that the MRI data (but not the labels) of the test subjects can
be used for learning the classifier. We point out that this is perfectly
valid and does not lead to double-dipping as the test labels are not
used for learning the classifier. For a clear explanation of the differences
between transductive and inductive machine learning algorithms,
we refer to Gammerman et al. (1998) and relation between semi-
supervised and transductive learning is discussed in detail by Chapelle
et al. (2006).

In order to examine the applicability of the semi-supervised method,
i.e., LDS, we applied it on the MRI data with and without feature
selection and compared its performance with the performance of its
supervised counterpart, the support vector machine (SVM). SVM is a
maximum margin classifier that is widely used in supervised classifica-
tion problems. In SVM, only labeled samples are used for determining
decision boundary between different classes.

Aggregate biomarker

In order to improve AD conversion prediction in MCI patients, we
developed a method for the integration of the baseline MRI data with
age and cognitive measurements acquired at baseline. The measure-
ments we considered were Rey's Auditory Verbal Learning Test
(RAVLT), Alzheimer's Disease Assessment Scale—cognitive subtest
(ADAS-cog), Mini Mental State Examination (MMSE), Clinical Dementia
Rating—Sum of Boxes (CDR-SB), and Functional Activities Questionnaire
(FAQ). These standard cognitive measurements, which are widely used
in assessing cognitive and functional performance of dementia patients,
are explained in the ADNI General Procedures Manual.? The rationale
was to include the cognitive assessments that are inexpensive to
acquire and available for the MCI subjects in this study. We only consid-
ered the composite scores of the measurements that often include
several subtests. We did not consider CSF or PET measurements for
the reasons outlined in the Introduction section. Since the effects of
normal aging on the MRI data were removed, age was again used as a
predictor, because it is a risk factor for AD.

The way that MRI data is combined with the cognitive measure-
ments is crucial to achieve a good estimation accuracy of the MCI-to-
AD conversion prediction. The simplest way would be to combine the
MRI data (only selected voxels) and cognitive measurements as a long
feature vector which is as the input of the classifier. We will refer to
this as data concatenation. However, this is not the best way, because
of the different natures of MRI data (close to continuous) and cognitive
measurements (mainly discrete) (Zhang et al., 2011). Therefore, we
propose a simple classifier ensemble for constructing the aggregate
biomarker. In effect, we used the MRI biomarker, derived using LDS
classifier, as a feature/predictor for the aggregate biomarker. The MRI
feature was combined with age and cognitive measurements and used
as input features for the random forest (RF) classifier. An RF consists
of a collection of decision trees all trained with different subsets of the
original data. Averaging of the outputs of individual trees renders RFs
tolerant to overlearning, which is the reason for their popularity in clas-
sification and regression tasks especially in the area of bioinformatics.
Note that an RF is an ensemble learning method that outputs vote
counts for different classes so the aggregate biomarker value approxi-
mates the probability of converting to AD. Random forests are often
used for ranking the importance of input variables by randomly

2 http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.
pdf.

permuting the values of each variable at a time, and estimating the de-
crease in accuracy on out of bag samples (Breiman, 2001; Liaw and
Wiener, 2002). The overview of the aggregate biomarker and its evalu-
ation is shown in Fig. 2. Previous applications of RFs in the context of AD
classification include Llano et al. (2011) who applied RFs to generate a
new weighting of ADAS subscores.

Performance evaluation

For the evaluation of classifier performance and estimation of
the regularization parameters, we used two nested cross-validation
loops (10-fold for each loop) (Huttunen et al., 2012; Ambroise and
Mclachlan, 2002). First, an external 10-fold cross-validation was imple-
mented in which labeled samples were randomly divided into 10
subsets with the same proportion of each class label (stratified cross-
validation). At each step, a single subset was left for testing and remain-
ing subsets were used for training. Again the train set was divided into
10 subsets that were used for the selection of classifier parameters listed
below. The optimal parameters were selected according to the
maximum average accuracy across the 10-fold of the inner loop. The
performance of the classifier was then evaluated based on AUC (area
under the receiver operating characteristic curve), accuracy (ACC, the
number of correctly classified samples divided by the total number of
samples), sensitivity (SEN, the number of correctly classified pMCI sub-
jects divided by the total number of pMCI subjects) and specificity (SPE,
the number of correctly classified sMCI subjects divided by the total
number of SMCI subjects) using the test subset of the outer loop. The
pooling strategy was used for computing AUCs (Bradley, 1997). The
reported results in the Results section are averages over 100 nested
10-fold CV runs in order to minimize the effect of the random variation.
To compare the mean AUCs of two learning algorithms, we computed a
p-value for the 100 AUC scores with a permutation test.

To perform the survival analysis and estimate the hazard rate for AD
conversion in MCI subjects, Cox proportional hazard model was
employed (see McEvoy et al., 2011; Gaser et al., 2013; Da et al., 2014
for previous applications of the survival analysis in the sSMCI/pMCI clas-
sification). The predictor was the real valued output of the classifier
(i.e., the value of the discriminant function in the case of LDS and
estimated probability of conversion in the case of RF; see the MRI
biomarker and Aggregate biomarker sections) and the conversion
time to AD in MCI subjects was taken as the time-to-event variable.
The duration of follow-up was truncated at 3 years for sMCI subjects
and uMCI subjects were not included in the analysis. The Cox models
implemented by MATLAB's coxphfit-function were adjusted for age
and gender. The Cox-regression was performed in the cross-validation
framework similarly as described above for AUC.

Implementation

The implementation of elastic-net RLR for feature selection was done
by using the GLMNET library (http://www-stat.stanford.edu/~tibs/
glmnet-matlab/). The support vector machine (SVM) with a Radial
Basis Function (RBF) kernel was used as supervised method for a com-
parison with LDS. The RBF kernel was used with the SVM as this widely
used kernel clearly outperformed the linear kernel in a preliminary test-
ing and linear kernels can be seen as a special case of the RBF kernels
(Keerthi and Lin, 2003). The implementation of SVM was done using
LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html) run-
ning under MATLAB. The implementation of LDS was done by using a
publicly available MATLAB implementation (http://olivier.chapelle.cc/
Ids/). The SVM has two parameters, C (soft margin parameter, see
Appendix A) and vy (parameter for RBF kernel function). For tuning
these parameters, a grid search was used, i.e., parameter values were
varied among the candidate set {10=4 1073, 1072, 1071, 10°, 10",
102, 103, 10%} and each combination was evaluated using cross-
validation as outlined above. LDS has more parameters to tune. Since


http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
http://olivier.chapelle.cc/lds/
http://olivier.chapelle.cc/lds/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf

E. Moradi et al. / Neurolmage 104 (2015) 398-412 403

10 iteration

Train subsets
Parameters
selection
MRI 10 fold CV train
e [ Ly Train subsets: Learning
|> new features algorithm
Train subsets (RF)
o
test
Age & Testsubset [ — = LDS G
Cognitive
measures \\ l—) Test subset: Classifier
:\ Test subset [”|_new features (RF)

Evaluation

[ Overall Performance ]
AUC, ACC,SEN,SPE

Fig. 2. Workflow for the aggregate biomarker and its cross-validation based evaluation. For computing the output of LDS classifier for test subjects, the test subset is used in the learning

procedure without any label information (shown with dashed arrow).

tuning many parameters with grid search is impractical, we considered
only the most critical parameters, i.e., C (soft margin parameter) and p
(softening parameter for graph distance computation) in grid search.
For tuning parameter C, its value was varied among the candidate set
{102,107, 10°, 10", 10%} and for parameter p among the candidate
set {1, 2, 4,6, 8, 10, 12}. For the other parameters, default values were
used except that the 10-nearest neighbor graphs were used for the ker-
nel construction (instead of fully connected graph) and the parameter &
in (Chapelle and Zien, 2005) was set to be 1. The MRI features were nor-
malized to have unit variance before the classification. The implementa-
tion of RF was the MATLAB port of the R-code of Liaw and Wiener
(2002) available at http://code.google.com/p/randomforest-matlab/.
All parameters were set to their default values. The CPU time for training
a single classifier (including parameter selection and performance eval-
uation using cross-validation) was in the order of tens of minutes on an
Intel Core 2 Duo processor, 3.00 GHz, 4 GB RAM. The image processing
of the Image preprocessing section required on average 8 min per single
image (3.4 GHz Intel Core i7, 8 GB RAM).

=54mm z=<46mm z=-40mm =-32 mm

=-26 mm

Results
MRI biomarker

In this section, we consider the experimental results obtained using
the biomarker based on solely MRI data as described in the MRI
biomarker section. The feature selection reduced the number of voxels
in MRI data from 29,852 to 309 voxels. Fig. 3 shows the locations of
the selected 309 voxels overlaid on the standard template. Supplemen-
tary Table S1 provides the ranking of the brain regions of the loci of the
selected voxels according to the Automatic Anatomical Labeling (AAL)
atlas. It can be observed that the selected voxels were spread all
over the brain (including the hippocampus, the temporal and frontal
lobes, the cerebellar areas, as well as the amygdala, insula, and
parahippocampus). These locations have been previously reported in
studies concerning the brain atrophy in AD (Weiner et al., 2012). The
neuropathology of AD is typically related to changes (e.g. atrophy that
reflects the loss and shrinkage of neurons) in the entorhinal cortex,
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z=2mm

=-18 mm zZ=-<4 mm

z=10 mm z=16 mm z=24mm z=30mm

z=38mm

z=44 mm z=52mm z=58 mm z=66 mm

Fig. 3. The locations of selected voxels by elastic-net RLR with the highest accuracy in discriminating AD and NC subjects within the brain in MNI (Montreal Neurological Institute) space.
One of the voxels appears to be slightly outside the brain due to the effect of smoothing and the larger voxel size of the pre-processed data compared to the voxel size of the template.
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that progress then to the hippocampus, the temporal, frontal and parie-
tal areas, before ultimately diffusing to the whole cerebral cortex
(Casanova et al., 2011b; Salawu et al., 2011). These brain structures,
especially the hippocampus, frontal and temporal areas have been
found to be effective in discriminating between AD patients and NC
(for a review see Casanova et al., 2011b and references therein). Also,
patterns of neuropathology in cerebellar areas have been reported in
previous studies (Sjobeck and Englund, 2001).

We applied LDS on the MRI data with and without feature selection
and compared its performance with the performance of its supervised
counterpart, the standard SVM. We also evaluated the impact of remov-
ing age-related effects from the MRI data for the purpose of early
diagnosis of AD. Because the age was used as a parameter for removing
age-related effects, the biomarker was based on MRI and age informa-
tion. However, the age was not used as a feature in the learning process.
Table 3 shows the results of the MRI biomarker. First, second and third
rows show the performance measures obtained using a SVM without
feature selection, with feature selection, and after removing age-
related effects, respectively. The fourth, fifth and sixth rows in Table 3
show the performance measures obtained by the LDS. The classification
accuracy of both methods without feature selection was only about
chance level. After the feature selection, the classification performance
based on AUC and ACC obtained by both methods improved. The
improvement (in AUC) was statistically significant for both LDS
(p <0.0001) and SVM (p < 0.0001). As a result, the elastic-net RLR
was able to select the relevant voxels corresponding to AD in the high
dimensional MRI data. In addition, feature selection was done indepen-
dently of the classification procedure. Using NC and AD datasets for
feature selection was a strategy that allowed a larger sample size for
the training and validating the MCI classifier.

In order to evaluate the performance of the elastic-net RLR for
feature selection within MRI data, we compared the classification
performance of MRI biomarker based on different feature selection al-
gorithms. For this purpose we used univariate t-test and graph-net
(Grosenick et al., 2013) feature selection methods. The AUC of MRI
biomarker with the univariate t-test based feature selection (1000 fea-
tures) was 0.71 and with graph-net based feature selection (354 fea-
tures) was 0.74. The elastic-net RLR based feature selection led to a
significantly improved performance in MRI biomarker as compared to
the t-test and graph-net based feature selection methods (p < 0.0001).
We experimented with the feature selection directly on MCI subjects’
data for reducing dimensionality of MRI data. More specifically, the
feature selection (elastic-net RLR) was performed in the outer loop of
two nested cross-validation loops by first performing the feature selec-
tion using all features in MRI data (29,852 voxels) and then using these
selected features for parameter selection and learning the model. The
performance of MRI biomarker with the feature selection using MCI
subjects decreased significantly compared to the feature selection
using an independent validation set of AD and NC subjects (from

Table 3

A comparison of the performances of SVM and LDS methods with and without feature
selection, and with and without age-related effects by using MRI data. The results are
averages over 100 computation times. For the classification accuracy (ACC), the chance
level is 62.12%.

Classifier ~ Feature Age related AUC ACC SEN SPE
selection  effect

SVM No Notremoved  66.37%  64.86%  87.90%  27.09%
SVM Yes Not removed  69.49%  66.01%  78.88%  44.91%
SVM Yes Removed 7430%  69.15%  86.73%  40.34%
LDS No Notremoved  67.60%  66.05% 85.67%  33.90%
LDS Yes Not removed  72.88%  72.60% 84.16%  53.66%
LDS Yes Removed 76.61%  74.74%  88.85%  51.59%

As expected, applying LDS on the MRI data after removing age-related effects increased
the AUC score from 0.7288 to 0.7661, which was significant according to the permutation
test (p < 0.0001). Removing age-related effects from MRI data improved the classification
performance significantly also in the case of SVM (AUC 0.6949 vs. 0.7430, p < 0.0001).

0.7661 to 0.6833, p < 0.0001). When the feature selection was done
combining AD and pMCI subjects into one class, and NC and sMCI
subjects into other, the performance did not significantly differ from
the suggested approach (AUCs of 0.7661 vs. 0.7692). As this approach
necessitates an additional CV loop, the suggested feature selection
method remained preferable.

We investigated how much unlabeled data improved the classifica-
tion accuracy. For this, we trained the LDS classifier also without data
from uMCI subjects. Note that the LDS is a transductive learning method
that uses the test MRI data (but not labels) as unlabeled data. As
explained in the MRI biomarker section, because the label information
of the test data was not used in the learning process, this does not
lead to ‘double-dipping’ or ‘training on the testing data’ problems, and
more specifically, to upward biased classifier performance estimates
(Chapelle and Zien, 2005; Chapelle et al., 2006). Fig. 4 shows the box
plots for AUC, ACC, SEN and SPE of LDS and SVM methods based on
MRI data (with feature selection and age-related effects removed). In
the case of LDS, the results are shown with and without utilizing uMCI
data as unlabeled data in the learning process. As it can be seen from
the results, adding uMCI data samples improved classification perfor-
mance slightly, but the improvement was not statistically significant
(p = 0.3072). However, it increased the stability of the classifier by
decreasing the variance in AUCs between different cross-validation
runs. The LDS method works based on the cluster assumption and
utilizes unlabeled data for finding different clusters and placing the
decision boundary in low density regions of the feature space. When
the cluster assumption does not hold, unlabeled data points do not
carry significant information and cannot improve the results (Chapelle
and Zien, 2005). Also, the number of unlabeled data might be too
small for significant performance improvement. Here, the number of
unlabeled data was only 130 which is few compared to number of la-
beled data (264 subjects). However, LDS either with or without uMCI
data samples, clearly outperformed the corresponding supervised
method (SVM, AUC 0.7430 vs. 0.7661, p < 0.0001). Even though adding
uMCI samples did not significantly improve the predictive performance
of the MCI-to-AD conversion, the use of LDS method in a transductive
manner led to a higher predictive performance compared to SVM
method.

Aggregate biomarker

In this section, we present the experimental results for the aggregate
biomarker of the Aggregate biomarker section based on MRI, age, and
cognitive measures, all acquired at the baseline. Table 4 shows the cor-
relation between cognitive measurements used in aggregate biomarker
to the ground-truth label.

In order to demonstrate the advantage of the selected data-
aggregation method and the utility of combining age and cognitive
measurements with MRI data, we also applied LDS and RF on data
formed by concatenating cognitive measurements, age and MRI data
(309 selected voxels with age-related effects removed) as a long vector.
Further, we applied RF on the age and cognitive measurements to pre-
dict AD in MCI patients in the absence of MRI data and combined SVM
with RF (abbreviated as SVM + RF) in the same way as LDS is combined
to RF in the aggregate biomarker. The box plots for the performance
measures of aggregate biomarker (LDS + RF), SVM + RF as well as RF
and LDS applied on the concatenated data and the RF without MRI are
shown in Fig. 5.

The aggregate biomarker achieved mean AUC of 0.9020, which was
significantly better than the AUC of LDS with aggregated data (0.7990,
p < 0.0001) and the AUC of RF with only cognitive measures (0.8819,
p < 0.001). With LDS, there was a significant improvement when inte-
grating cognitive measurements and MRI data (mean AUC increased
from 0.7661 to 0.7990, p < 0.0001). However, in the case of RF adding
cognitive measurements with MRI data decreased its performance sig-
nificantly when comparing to RF with only cognitive measurements
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Fig. 4. Box plots for AUC, ACC, SEN and SPE of SVM and LDS methods based on MRI data with selected features and removed age-related effects, within 100 computation times. In the case of
LDS, the depicted results are obtained with (LDS-labeled + unlabeled) and without (LDS-only labeled) utilizing uMCI subjects in the learning. On each box, the central mark is the median
(red line), the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted with a +.

(mean AUC decreased from 0.8819 to 0.8313, p < 0.0001). These results
seem to suggest that RF had difficulties in aggregating MRI data with
cognitive measures and supports our decision to use two different
learning algorithms when designing the aggregate biomarker. Also,
the performance of SVM + RF was clearly worse than the performance
LDS + RF (p <0.001) and even RF with only cognitive measures
(p < 0.001). We hypothesize that this is because SVM overlearned and
failed to provide a useful input to random forest while the images in
the test set regularize LDS in a useful way. Fig. 6 shows the ROC curves
of one computation time (of the median AUC within 100 cross-
validation runs) of MRI biomarker (LDS with only MRI data), RF with
only age and cognitive measures, LDS and RF methods trained on the
concatenated data from MRI, age and cognitive measurements, and of
the aggregate biomarker with MRI, age and cognitive measurements.
The ROC curve of the aggregate biomarker dominates the other ROC
curves nearly everywhere. We also calculated the stratified AUC for
different pMCI subgroups, i.e., pMCI subjects that are converted to AD
in different time points (1, 2 or 3 years), for both MRI and aggregate

Table 4
The correlation between cognitive measures to the ground-truth labels. The negative
correlation indicates that the higher the value the lower is the risk for AD.

Age MMSE FAQ CDR-SB ADAS-cog ADAs-cog RAVLT
total-11 total Mod
Correlation —0.06 —0.28 040 034 0.43 0.43 —0.46

biomarkers. Results are shown in Fig. 7. Fig. 7 shows, as expected, that
the prediction was more accurate the closer the conversion subject
was. Additionally, we evaluated the classification performance of the
MRI and aggregate biomarkers against a random classifier, where a bio-
marker value for each subject was drawn randomly from a standard
normal distribution. The mean AUC of the random classifier was
0.5016, which was significantly lower than the AUC of the MRI biomark-
er (AUC = 0.7661, p< 0.0001) as well as the AUC of aggregate biomark-
er (AUC = 0.9020, p < 0.0001).

Random forests can (without too much extra computational
burden) produce of an estimate of feature importance via out-of-bag
error estimate (Breiman, 2001; Liaw and Wiener, 2002). Fig. 9 shows
the importance of each feature of the aggregate biomarker calculated
by the RF classifier. The MRI feature was the combined feature generat-
ed by LDS classifier as described in the MRI biomarker section. Accord-
ing to Fig. 9, the MRI biomarker and RAVLT were the most important
features followed by ADAS-cog total, FAQ, ADAS-cog total Mod, age,
CDR-SB, and MMSE. We computed AUCs for each feature, considered
one-by-one, using 10-fold CV. AUCs for MRI, RAVLT, ADAS-cog scores
and FAQ were high while age, CDR-SB and MMSE were less significant.

The survival curve for the aggregate biomarker is shown in Fig. 8.
According to Fig. 8 subjects in the first quartile have the lowest risk for
conversion to AD and subjects in the last quartile have the highest
risk. Table 5 shows the hazard ratios for the continuous predictor and
for different quartiles compared to the first quartile. These are shown
for the aggregate biomarker, the MRI biomarker and the RF trained
with age and cognitive measures. High biomarker values were associat-
ed with the elevated risk for Alzheimer's conversion (p < 0.001 for all
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data concatenation.

three biomarkers). The aggregate biomarker showed over 10 times
higher risk of conversion to AD for the subjects in the last quartile
as compared to the subjects in the first quartile while for the MRI
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Fig. 6. ROC curves of subject's classification to SMCI or pMCI using classification methods,
LDS, SVM and aggregate biomarker using only MRI and MRI with age and cognitive
measurements. Each ROC curve is from a cross-validation run with the median AUC within
100 cross-validation runs.

biomarker and the RF with age and cognitive measures (without MRI)
this risk was 3.5 and 5.83 times higher, respectively.

Comparisons to other methods

Cuingnet et al. (2011) tested ten different methods for classification
of pMCI and sMCI subjects. Only four of these methods, listed in Table 6
using the naming of Cuingnet et al. (2011), performed better than the
random classifier for the task. However, none of them obtained signifi-
cantly better results than the random classifier, according to McNemar
test. In order to compare the performance of our biomarkers with the
work presented by Cuingnet et al. (2011) we performed the experi-
ments using training and testing set used on their manuscript. The
Supplementary Tables S7 and S8 explain the differences between ours
and Cuingnet's labeling of the subjects. With aggregate biomarker, one
subject was excluded from the training set and two subjects from the
testing set in sMCI groups due to missing cognitive measurements.
The results are reported in Table 6. The McNemar's chi square tests
with significance level 0.05 were performed to compare the perfor-
mance of each method with random classifier, as it was done in
Cuingnet et al. (2011). We also list the results of Wolz et al. (2011)
with the dataset used in Cuingnet et al. (2011) in Table 6. According
to McNemar tests, both MRI and aggregate biomarkers performed
significantly better than random classifier for this data. Also, with this
dataset, the aggregate biomarker provided better AUC than the MRI bio-
marker. Interestingly, the margin of difference between the AUCs of the
two biomarkers was smaller than with our labeling. This is probably
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to AD was reported at 36 months follow-up.

caused by the difference in the labeling of subjects detailed in Supple-
mentary Tables S7 and S8.

Discussion

For the early identification of MCI subjects who are in risk of
converting to AD, we developed a new method by applying advanced
machine learning algorithms for combining MRI data with standard
cognitive test results. First, we presented a new biomarker utilizing
only MRI data that was based on a semi-supervised learning approach
termed low density separation (LDS). The use of LDS in place of more
typical supervised learning approaches based on support vector
machines was shown to provide advantages as demonstrated by signif-
icantly increased cross-validated AUC scores. Second, we presented a
new method for combining MRI-biomarker with age and cognitive
measurements. This method combines the score provided by the MRI-
biomarker and applies it as a feature for the learning algorithm (RF in
this case). This aggregate biomarker provided a cross-validated AUC
score of 0.9020 averaged across 100 different cross-validation runs.
Since the cross-validation was properly nested, i.e., the testing data
was not used for feature nor parameter selection, this AUC can be seen
as promising for the early prediction of AD conversion.

The main novelties of the MRI-biomarker were 1) feature selection
using only the data from AD and NC subjects without using any data
from MCI subjects, thus reserving all the data about MCI subjects for
learning the classifier, and 2) removing age-related effects from MRI
data by using only data from healthy controls. The feature selection in
this way can be seen as a mid-way between whole-brain, voxel-based
MCI-to-AD conversion prediction approaches (as in Gaser et al., 2013)
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Fig. 8. Kaplan-Meier survival curve for aggregate biomarker by splitting the predictor into
quartiles. The follow-up period is truncated at 36 months.

and approaches that use the volumes of pre-defined regions of interest
(ROIs) (as in Ye et al., 2012) as MRI features. For the feature selection,
we applied elastic-net RLR by selecting all the features that had a non-
zero coefficient value along the regularization path up to a point
which may be considered to provide minimal applicable amount of
regularization. This allowed us to detect all the voxels which may be
thought to provide relevant information for the classification task with
concrete evidence that they indeed are useful for the discrimination.
The regularized logistic regression was chosen as a model selection
method because it has been widely used in multi-voxel pattern analyses
of functional neuroimaging data as well as MRI based AD classification
approaches and shown to outperform many other feature selection
methods (Huttunen et al., 2012, 2013; Ryali et al., 2010; Ye et al,,
2012; Casanova et al., 2011a,b; JanouSova et al., 2012). According to
the results presented here (see Table 3), elastic-net RLR was able to se-
lect relevant voxels corresponding to AD in the high dimensional MRI
data. We note that the number of selected voxels is not sufficient to
fully capture the AD atrophy. The elastic net succeeded in this task
better than the tested competing methods and provides a voxel set
that, although being sparse, was well distributed all over the brain. If
our aim would be to capture the full extent of atrophy in AD, a more spe-
cialized feature selection method would probably be more adequate
(Fan et al., 2007; Cuingnet et al., 2013; Grosenick et al., 2013; Michel
etal, 2011).

As normal aging and AD have similar effects on certain brain regions
(Desikan et al., 2008; Dukart et al., 2011), we estimated the effects of
normal aging on the MRI based on the data of healthy controls in a
voxel-wise manner and then removed it from MRI data of MCI subjects
before training the classifier. Our results indicated that removing age-
related effects from MRI could improve significantly the prediction of
AD, especially young pMCI subjects as well as old sMCI subjects were
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Fig. 9. The importance of MR], age and cognitive measurements calculated by RF classifier.
ADAS-cog total 11 and ADAS-cog total Mod are weighted averages of 13 ADAS subscores,
ADAS-cog subscore Q4 (delayed word recall) and Q14 (number cancelation) are not
included in the ADAS-cog total 11. RAVLT is RAVLT-immediate that is sum score for 5
learning trials. The AUC of each individual feature was calculated using RF except for
MRI that LDS was used. MRI: 0.7661, RAVLT: 0.7172, ADAS-cog total-11: 0.7185, FAQ:
0.7290, ADAS-cog total Mod: 0.6554, age: 0.5573, CDR-SB: 0.6789, MMSE: 0.6154.
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Table 5

Hazard rates (HR) of MCI to AD conversion for aggregate biomarker, MRI biomarker and RF with only age and cognitive measures (all methods adjusted for age and gender). Note that the
continuous Hazard rate of MRI biomarker is not comparable to other biomarkers because it results from a different classifier (LDS vs. RF) with a different output (Sections MRI biomarker

and Aggregate biomarker) and one-unit change has a different meaning.

Aggregate biomarker MRI biomarker RF with age & CM

HR 95% CI p HR 95% CI p HR 95% CI p
Continuous 24.63 12.2-49.9 <0.001 248 1.9-33 <0.001 19.85 10.1-39.1 <0.001
1st vs 2nd quartile 5.14 2.84 2.64
1st vs 3rd quartile 9.16 2.72 5.04
1st vs 4th quartile 10.60 3.52 5.83

classified more accurately after the age removal. We hypothesize that
this is because the AD related atrophy in young pMCI was mixed to
the normal age related atrophy. Moreover, due to misidentifying age-
related atrophy as AD related atrophy in old sMCI subjects, these
subjects could be misdiagnosed as pMCI.

We constructed the aggregate biomarker by a specific ensemble
learning method. We first derived the MRI biomarker by using LDS
and then added the output of the LDS classifier as a feature together
with the age and cognitive measures for RF, which acts as a classifier
combiner. This aggregate biomarker was shown to outperform data
concatenation with either LDS or RF as a learning algorithm. Moreover,
the data concatenation scheme with RF outperformed the MRI biomark-
er and the data concatenation scheme with LDS. In addition to demon-
strating the utility of combining cognitive measurements with MRI,
these results suggest that different classifiers were adequate for the
different stages of the biomarker design method. LDS performed well
with close-to-continuous data (such as MRI) but failed when a part of
the data was discrete. Instead, RF was more immune to the data type
because it is able to handle discrete data and for continuous data type
it applies an efficient discretization algorithm before the learning step.
The difficulty of LDS to adapt to discrete features is not surprising
because LDS in our implementation applied the Euclidean distance in
constructing the graph-based kernel (see Appendix A) that is sub-
optimal for discrete features. Recently, Wang et al. (2013), Hinrichs
etal. (2011) and Zhang et al. (2011) considered multiple kernel learning
algorithms for combining MRI, PET and CSF biomarkers for AD vs. NC
and NC vs. MCI classification and showed that the combination of
multiple data sources improves the classification performance. All data
in these works is close-to-continuous and all the data sources have
multiple features. Instead, in our case, only MRI has multiple features
and cognitive measurements provide a single feature as we rely on
the composite cognitive scores with standard weightings. Interestingly,
Zhang et al. (2011) compared the performance of their multiple kernel
learning to a simple classifier ensemble (majority vote between three
SVMs trained with data from three different modalities, MRI, PET, and
CSF), and obtained nearly as good classification accuracy with the
classifier ensemble (75.6% for NC vs. MCI) as with the multiple kernel
learning (76.4% for NC vs. MCI).

Compared to several previous studies (listed in Table 7) using ADNI
database, our aggregate biomarker seems promising with an AUC of

Table 6

The performance metrics in the ADNI data used by Cuingnet et al. (2011). Except for MRI
and aggregate biomarker, SEN, SPE values and McNemar test p-scores are extracted from
Cuingnet et al. (2011) and Wolz et al. (2011). McNemar test p-value is not available for
Wolz et al. (2011). Cuingnet et al. and Wolz et al. (2011) did not provide AUCs.

Method SEN  SPE AUC  McNemar test
MRI biomarker 64%  72%  75% p = 0.0304
Aggregate biomarker 40% 94%  81% p = 0.0013
Cuingnet et al. (2011) Voxel-STAND 57%  78% - p=04
Cuingnet et al. (2011) Voxel-COMPARE ~ 62% 67% - p=10
Cuingnet et al. (2011) Hippo-Volume 62% 69% - p = 0.885
Cuingnet et al. (2011) thickness direct 32%  91% - p =024
Wolz et al. (2011) (all) 69%  54% - -

0.9020, ACC of 0.8172, SEN of 0.8665 and SPE of 0.7364, on 164 pMCI
and 100 sMCI subjects. To the best of our knowledge, the study by Ye
et al. (2012) reported a highest achieved performance (AUC of
0.8587) to date for predicting AD in MCI patients in a relatively large
data samples (319 labeled MCI subjects).

The comparison of different methods for MCI-to-AD conversion pre-
diction is hampered by the fact that the nearly all works use a different
classification of the subjects into stable and progressive MCI. For
example, Wolz et al. (2011) used a simple criterion for labeling where
a subject who had not converted to AD before July 2011 was labeled
as stable MCI. This labeling provides a label for every MCI subject, but,
on the other hand, leads to very heterogeneous stable MCI group that
contains subjects with progressive MCI (Runtti et al., 2014) and is not
sensible in our semi-supervised learning setup. Our pMCI group is
almost the same as in Eskildsen et al. (2013) (156 subjects of 164 are
common), but using more recent conversion information, we found
that 41 subjects labeled as stable MCI by Eskildsen et al. (2013) had
converted to AD or the diagnosis had changed from MCI to NC and we
labeled them as uMCI. Finally, the 3-year cut-off period used here is
somewhat arbitrary and was decided based on the length of follow-up
for the original ADNI-1 project while AD-pathologies might be detect-
able in MRI even earlier than 3 years before clinical diagnosis
(Adaszewski et al., 2013) and setting a fixed cut-off period is difficult
due to non-dichotomous nature of the problem, partly caused by the
fact that the pMCI group is composed of subjects who convert to AD
in different time spans from the baseline. Partial remedies for the
problem include the use of more homogeneous groups for the classi-
fier evaluation as we have done in Fig. 7 (following Eskildsen et al.
(2013)) and the use of statistical methods from the survival analysis
to evaluate AD-prediction biomarkers as we have done in Fig. 8 and
Table 5. Survival analysis has been used to evaluate MCI-to-AD con-
version prediction previously in McEvoy et al. (2011), Gaser et al.
(2013), and Da et al. (2014). Specifically, McEvoy et al. (2011) and Da
et al. (2014) build an MRI-based MCI-to-AD conversion prediction
biomarkers based on data from AD and NC subjects and compare the
biomarker magnitudes in MCI subjects to their time to conversion to
AD using either Kaplan-Meier curves and/or Cox hazard models. As
Da et al. (2014) noted the results of survival analyses cannot be directly
compared to the results of dichotomous classification into pMCI and
sMCI groups, but are a complementary approach. As in previous studies
(McEvoy et al., 2011; Gaser et al., 2013; Da et al., 2014), we showed that
the elevated biomarker values are associated with the higher risk of
converting to AD.

An important characteristic of the present study was the use of a
semi-supervised classification method for the AD conversion prediction
in MCI subjects. The semi-supervised method (LDS) was shown to out-
perform its counterpart supervised method (SVM) in the design of MRI
biomarker. We also found that adding data about uMCI subjects as un-
labeled data in the LDS learning procedure improved the classification
performance slightly but not enough to reach the statistical significance.
This is probably due to a relatively small number of uMCI subjects.
Previously, Filipovych and Davatzikos (2011) have found that even a
small number of unlabeled data improved the performance of TSVM
in AD versus NC classification when the number of labeled data was
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Table 7
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Supervised classification of AD conversion prediction using ADNI database. AUC: area under the receiver operating characteristic curve, ACC: accuracy, SEN: sensitivity, SPE: specificity.

Author Data Validation method Result Conversion time
Moradi et al. (this paper) MR], age and cognitive measures 10-fold cross-validation AUC = 90% 0-36 months
ACC = 82%
SEN = 87%
SPE = 74%
Misra et al. (2009) Basic measures and MRI data, Leave-one-out cross-validation AUC = 77% 0-36 months
27 pMCI and 76 sMCI ACC = 75%-80%
Davatzikos et al. (2011) MRI and CSF, k-fold cross-validation AUC = 73% 0-36 months
69 pMCI and 170 sMCI Max ACC = 62%
Ye et al. (2012) Basic measures and MRI data, Leave-one-out cross-validation AUC = 86% 0-48 months
177 sMCl and 142 pMCI
Zhang and Shen (2012) MRI, PET and cognitive scores, Leave-one-out cross-validation AUC = 77% 0-24 months
38 pMCI and 50 sMCI ACC = 78%
SEN = 79%
SPE = 78%
Gaser et al. (2013) Age and MRI data, Independent test set AUC = 78% 0-36 months
133 pMCI and 62 sMCI
Cuingnet et al. (2011) MRI data, Independent test set ACC = 67% 0-18 months
134 sMIC, 76 pMCI SEN = 62%
SPE = 69%
Shaffer et al. (2013) MRI, PET, CSF and basic measurements, 97 MCI k-fold cross-validation ACC = 72% 0-48 months
Eskildsen et al. (2013) Age and MRI data, Leave-one-out cross-validation AUC: 0-48 months
161 pMCI, 227 sMCI pMCI6 vs sSMCI = 81%,
pMCI12 vs sMCI = 76%,
pMCI24 vs sMCI = 71%,
pMC36 vs sMCl = 64%,
Wolz et al. (2011) Combination of different MR-based features k-fold cross-validation ACC = 68% 0-48 months
238 sMC(l, 167 pMCI SEN = 67%
SPE = 69%
Chupin et al. (2009) MRI data, Independent test set ACC = 64% 0-18 months
134 sMCl, 76 pMCI SEN = 60%
SPE = 65%
Cho et al. (2012) MRI data, Independent test set ACC = 71% 0-18 months
131 sMClI, 72 pMCI SEN = 63%
SPE = 76%
Coupé et al. (2012) MRI data, Leave-one-out cross-validation ACC = 74% 0-48 months
238 sMCl, 167 pMCI SEN = 73%
SPE = 74%
Westman et al. (2011a) MRI data, k-fold cross-validation ACC = 59% 0-12 months
256 sMCI, 62 pMCI SEN = 74%
SPE = 56%
Cheng et al. (2012) MRI, PET, CSF k-fold cross-validation AUC = 73.6% Not available
51D, 52 NC, ACC = 69.4%
99 MCI SEN = 64.3%
Only MRI SPE = 73.5%
AUC = 70.0%
ACC = 63.3%
SEN = 59.8%
SPE = 66.0%
Casanova et al. (2013) Only cognitive measures, k-fold cross-validation ACC = 65% 0-36 months
188 NC, 171 AD, SEN = 58%
153 pM(CI, 182 sMCI SPE = 70%
Only MRI (GM) ACC = 62%
SEN = 46%
SPE = 76%

very small (10 or 20 samples). However, AD vs. NC classification is an
easier problem than sMCI vs. pMCI classification (Cuingnet et al.,
2011), especially if the number of labeled training data is small
(Filipovych and Davatzikos, 2011). Generally, unlabeled data improves
the classification performance when the assumed model is correct
(Zhang and Oles, 2000) and the amount of improvement depends
strongly on the number of labeled data and the problem complexity
(Cohen et al., 2002). In our recent conference paper (Moradi et al.,
2014) we provided evidence that even a small number of unlabeled
data aids the MRI-based AD conversion prediction, but the size of im-
provement decreases when the number of labeled data increases.

In summary, we developed an approach to predict conversion to AD
within MCI patients by combining machine learning approaches includ-
ing feature selection for selecting most relevant voxels corresponding to
AD within MRI data, regression for determining normal aging effects
within the brain and supervised and semi-supervised classification

methods for discriminating between pMCI vs. sMCI subjects. Our aggre-
gate biomarker achieved a very high predictive performance, with a
cross-validated AUC of 0.9020. Our experimental results demonstrated
also the important role of MRI in MCI-to-AD conversion prediction.
However, the integration of MRI data with age and cognitive measure-
ments improved significantly the AD conversion prediction in MCI
patients.
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Appendix AA.1. Low density separation (LDS) (Chapelle and Zien,
2005)

The LDS algorithm is implemented in two steps:

1) Training a graph-distance derived kernel.
2) Training TSVM by gradient descent with the graph-distance derived
kernel.

A.2. Standard support vector machines and transductive support vector
machines

Denote a training data point by x,, and associated class label by
¥n € {—1, 1}. The task is to learn a linear classifier (possibly in a high-
dimensional kernel space) described by the weight vector w perpendic-
ular to hyperplane separating the two classes and the bias b so that the
sign of the discriminant function d(x) = w'x + b determines the class
label for data point x. The standard SVM aims at maximizing the margin
around decision boundary by solving the following optimization
problem

1 N
?2121,{ 5 Iw? oM } )

st.y,(w -x,—b)+¢§,>1, n=1,...,N

yeees

where N is the number of labeled data points. This is the soft-margin
SVM allowing some degree of misclassification (in the training set)
to prevent overfitting by introducing positive slack variables §,,
n =1, ..., N which measure the degree of misclassification of data
xp,. The idea with adding the slack variable is to maximize the margin
while finding a tradeoff between a large margin and a small error
penalty. Here, C is the penalty parameter that controls the tradeoff
between a large margin and a small error penalty.

In the transductive SVM, the idea is to maximize the margin around
decision boundary by using labeled data while simultaneously driving
the hyperplane as far away as possible from unlabeled points. Therefore,
the optimization problem in TSVM becomes

. 1 5 N | NiM
min { o |[w]| +CY 6 +C > &,
w,§ b n=1 n=N+1
s.t.y,(w -x,—b)+§=>1, n=1,...N
W ,—b| +&=1, n=N+1,..M

2)

where N is the number of labeled data samples and M is the number

of unlabeled data samples, assuming that samples 1, ..., N are labeled
and N + 1, ..., M are unlabeled. This can be rewritten as minimizing

1 5 N *N+M
SW +CY LW %, —b)) +C" > Lw -x,—b| 3)
n=1 n+N+1

where the function L(t) = max(0, 1 — t) is the classical Hinge Loss. The
implementation of TSVM was introduced first by Joachims (1999),
which assigned a Hinge Loss function L(t) on the labeled samples and
Symmetric Hinge Loss function L(|t|) on the unlabeled samples.

However, because the cost function defined in Eq. (3) is not differen-
tiable, it is replaced by

1 5 N o LN
o +C L (yp(w -x,—b)) +C" Y L'(Iw -x,—b]). (4)
n=1 n=N+1

Here the function [* = exp(—3t?) is the Symmetric Sigmoid
function, a smooth version of the Hinge Loss function. In LDS, Eq. (4)
is minimized by performing the standard conjugate gradient descent
on the primal formulation for optimization.

A.3. Graph based similarities

Graph-based methods for semi-supervised learning use a graph
representation G = (V, E) of the data. The graph consists of a node for
each labeled and unlabeled sample V = {x;: i = 1, .., N + M} and
edges placed between nodes E = {(i, j)}, which model the similarities
of the samples. The node set V is divided into labeled points V; of size
N and unlabeled points V,, of size M.

Here, the graph is constructed by using pairwise similarities be-
tween samples by squeezing the distances in high density regions. The
cluster assumption states that points are probably in the same class if
they are connected by a path through high density regions. As the idea
here is to construct a graph which captures the true distribution of the
observations, edges must be weighted based on some distance measure
such as the Euclidean distance denoted here by d(i,j) := ||x; - x;|| How-
ever, in many problems the Euclidean distance cannot capture the true
distribution in clustering (Lan et al., 2011). Therefore, a nonlinear
weight is assigned to each edge e; = exp(pd(i, j)) — 1 where p is the
stretching factor to be selected by cross-validation. After creating the
10-nearest neighbors graph with weights e, the distances between
two points are calculated as a distance along shortest paths between
the points based on Euclidean distance from all labeled and unlabeled
data points. The distance matrix D” according to the density distance
measure is calculated from all labeled points to all data (labeled and
unlabeled points) according to

, 1 b=l 2
D;; = P log |1+ Jnin 1;: <ep(k)p(k+l)) 5)

where p is the stretching factor and P;; is the set of all paths (p)
connecting x; and x;. As described in Chapelle and Zien (2005), p € v
is a path of length [ := |p| on G = (V, E), in case (p(k), p(k + 1)) €E
for 1 <k <|p|, which connects the nodes p; and py,. The kernel defined
by D” is not necessarily positive-definite, and, therefore, before applying
SVM, we perform the eigenanalysis of D” and retain only eigenvectors
corresponding to the highest (and positive) eigenvalues. In more detail,
let \q, Ny, ..., Ay be the decreasing eigenvalues of HND°HN + M) where
HP is the p x p centering matrix and let the U = (uj,) be the matrix of
the corresponding eigenvectors. Then, kernelized representation of X is

X' = QX) : X = uy/N fork =1,...p,

where p is selected as described in Chapelle and Zien (2005).
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Appendix B

Denote the data from the pre-processed MRI of subjecti (i =
1, ..., N) by x; = [Xi1, ..., Xiu]", where M is the number of brain voxels,
let I; € {AD, MCI, NC } be the diagnosis of the subject i, and g; the age
of the subject i.

B.1. Age removal

Denote the vector of intensity values of the NC (MCI) subjects at the
voxel j by 7 (M) and the vector of ages of the NC (MCI) subjects by a
aNC ( aMCl )

1. Estimate the effect of age to data at each voxel separately by a fitting
a linear model /" = aa™ + ayo. Solve this model in the least
squares sense resulting in estimates &;, &jo.

2. Apply the model from the Step 1 to remove the age effects of each
voxel separately from MCI data: #}90" = xMC!—&;aMT 1 &jo.

B.2. Feature selection

The goal of this feature selection is to select all the features (voxels)
among M that are useful in linear separation of the AD class from the NC
class. The feature selection consists of the following steps:

1. Train a sparse logistic regression classifier using elastic-net penalty,
i.e,, a combination of l; and I, norms of the coefficient vector 3, sep-
arating the class AD from the class NC for various A, t = 1, ..., 100
using the full data (all MRI voxels), by maximizing the elastic-net
penalized log-likelihood

> log LC(By + Bx;) + Y log (1—LC(By + Bxy) ()

I,=AD l;=NC

— A (Bl + (1-alIBl3)

where y; = 1if ; = AD and y; = 0if ; = NC and LC(z) = 1/(1 +
exp(z)) is the logistic function and we set & = 0.5. Note that the
algorithm used here estimates the classifiers along the whole regu-
larization path A, t = 1, ..., 100 at once.

2. To select the best among A, run 100 10-fold CV runs to yield AY) in
each run that minimize the CV error and select the smallest of
these as \*.

3. Select all the features that have a non-zero coefficient value 3;(A) (in
the trained logistic regression model) for any A > A\* the along the
regularization path up to A*. This ensures that we select all the
features (voxels) that can be considered to be useful for linearly
separating the AD and NC classes.

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.10.002.
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