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 A B S T R A C T

Plasma biomarkers are associated with cognitive performance and decline in Alzheimer’s disease, making 
them promising for early detection. This study investigates their predictive value, combined with non-invasive 
measures, in forecasting cognitive decline in individuals without dementia. We developed a multimodal 
machine-learning approach incorporating plasma biomarkers (Amyloid𝛽42/40 (A𝛽42/40), p-tau181, NfL), MRI, 
demographics, APOE4, and cognitive assessments to predict the rate of cognitive decline. Various models 
were designed to predict decline rates across cognitive domains (memory, executive function, language, 
and visuospatial abilities) and assess their relevance in predicting dementia progression. Cross-validated 
correlations between predicted and actual cognitive decline rates were 0.50 for memory, 0.49 for language, 
0.42 for executive function, and 0.44 for visuospatial ability. MRI showed greater predictive importance than 
plasma biomarkers. Among plasma biomarkers, NfL and p-tau181 outperformed A𝛽42/40. Predicting cognitive 
decline and progression to MCI/dementia was most accurate in the memory domain, where plasma biomarkers 
(A𝛽42/40, p-tau181, NfL) added significant value to predictive models, likely due to their AD-specific nature. 
Plasma biomarkers contributed less to predictions in other cognitive domains. The results indicate that plasma 
biomarkers, particularly when combined with MRI, demographics, APOE4, and cognitive measures, have 
significant potential for predicting memory decline and assessing the risk of dementia progression, even in 
cognitively unimpaired individuals.
1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disease 
with a complex and unclear pathway and a long prodromal phase. Early 
detection and accurate prediction of AD are crucial for implementing 
timely interventions that may slow disease progression and improve 
patient outcomes. With several promising AD-modifying therapies cur-
rently in development (Van Dyck et al., 2023; Mintun et al., 2021), 
the early identification of individuals at risk for cognitive decline has 
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become increasingly important. As these therapies become available, 
accurately predicting cognitive decline at the patient level will be 
crucial for guiding clinical decisions. This ensures that costly treatments 
with potential side effects are administered only to those likely to 
benefit, thereby optimizing clinical outcomes and resource allocation.

Current diagnostic guidelines for AD involve detecting markers 
associated with brain amyloid-𝛽 (A𝛽) plaques, aggregated tau (T), 
and neurodegeneration or neuronal injury (N) (Jack et al., 2018), 
typically measured using cerebrospinal fluid (CSF) (Tarasoff-Conway 
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et al., 2015) and positron emission tomography (PET) imaging (McK-
hann et al., 2011). However, these methods are often impractical for 
widespread use in community health settings due to their high costs 
and invasive nature. There is a critical need for more affordable, 
less resource-intensive, and widely accessible blood-based biomark-
ers (Wang et al., 2023). Recent advancements in biomarker research 
have highlighted plasma biomarkers as a promising alternative. These 
non-invasive indicators of neurodegenerative processes facilitate earlier 
diagnosis and more effective monitoring of disease progression (West 
et al., 2021; Mattsson-Carlgren et al., 2023; Moradi et al., 2019; Brand 
et al., 2022). Key plasma biomarkers, such as A𝛽42/40, p-tau 181, 
and neurofilament light (NfL), offer significant insights into AD pathol-
ogy, aiding in a better understanding and earlier detection of the 
disease (Mattsson-Carlgren et al., 2023; Zhang et al., 2024).

While plasma biomarkers offer significant diagnostic accuracy for 
AD, they have limitations when used alone. The limited exchange 
of proteins between plasma and brain extracellular fluid can compli-
cate the tracking of longitudinal changes in AD pathology (Blennow 
and Zetterberg, 2018; Yu et al., 2024). Integrating plasma biomarkers 
with other non-invasive measures, such as MRI and cognitive test 
results can enhance the predictive accuracy of AD conversion outcomes. 
This combination leverages the complementary strengths of various 
biomarkers, providing a more comprehensive understanding of the 
disease. Recent studies have underscored the importance of integrating 
different biomarkers to improve the predictive performance of early AD 
detection (Moradi et al., 2015; Aberathne et al., 2023; Hl et al., 2024; 
Moradi et al., 2024). However, most previous research has focused 
on combining biomarkers such as MRI, cognitive test results, and PET 
imaging, with less emphasis on the role of plasma biomarkers in pre-
dicting cognitive decline across various cognitive domains (Aberathne 
et al., 2023; Cao et al., 2023). While recent studies have increasingly 
used plasma biomarkers to predict brain amyloidosis, their utility in 
predicting cognitive decline remains underexplored (Palmqvist et al., 
2019; Brand et al., 2022).

This study aims to explore the role of plasma biomarkers in con-
junction with other non-invasive biomarkers, including MRI data, de-
mographic information, APOE4, and cognitive assessments, to predict 
the rate of cognitive decline in individuals without dementia using 
machine learning approaches. The specific objectives are to develop an 
ML-based approach by integrating different non-invasive biomarkers, 
including three key plasma biomarkers (A𝛽42/40, p-tau 181, and NfL) 
to (a) predict the rate of cognitive decline across different domains, 
(b) investigate the relevance of various composite cognitive scores in 
predicting progression to dementia, and (c) predict progression to mild 
cognitive impairment (MCI) or dementia in cognitively unimpaired 
(CU) and MCI groups.

2. Materials and methods

2.1. ADNI data

Data used in this work were obtained from the ADNI (http://adni.
loni.usc.edu). The ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. Weiner, MD. 
The primary goal has been to test whether serial MRI, PET, other 
biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of MCI and early AD. For 
up-to-date information, see (www.adni-info.org).

This study included participants with baseline demographics,
APOE4, plasma biomarkers (A𝛽42/40, p-tau181, NfL), and T1-weighted 
MRI, who also had available baseline and longitudinal composite cogni-
tive scores. We included individuals who had at least one follow-up visit 
with available composite cognitive scores occurring two years or more 
after the baseline assessment. Since not all the selected participants had 
the plasma A𝛽42/40 measure, we created two study cohorts for our 
analysis. Cohort 1 included participants with plasma biomarkers of NfL 
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and p-tau181, but not A𝛽42/40. The Cohort 2 included all three plasma 
biomarkers: A𝛽42/40, p-tau181, and NfL. Cohort 2, which includes 
A𝛽42/40, is a subset of Cohort 1. Having two cohorts is important 
because it allows us to utilize a larger sample size in Cohort 1, thereby 
improving the statistical power of our findings when A𝛽42/40 is not 
considered. This approach is critical because NfL and p-tau 181 alone 
can still provide significant insights into cognitive decline and AD 
progression, as they are well-established markers of neurodegeneration 
and tau pathology, respectively (Mendes et al., 2024; Smirnov et al., 
2022). Cohort 2 allows us to specifically evaluate the added value 
of including the A𝛽42/40 biomarker, which has been suggested to 
predict brain amyloidosis (Doecke et al., 2020), a hallmark of AD. By 
conducting all experiments separately for both cohorts, we can compare 
the predictive power of models with different biomarker combinations, 
and assess the importance of A𝛽42/40 in conjunction with other 
biomarkers. The baseline characteristics of study cohorts are presented 
in Table  1 and participant’s RIDs are available as supplementary 
material.

2.2. Demographics, APOE4, composite cognitive scores

The ADNI baseline demographics (age, gender, years of education), 
APOE4, and baseline diagnosis were obtained from ADNIMERGE.csv ta-
ble and the Composite cognitive scores were obtained from ‘‘UWNPSY-
CHSUM.csv’’, downloaded from the ADNI website (http://adni.loni.usc.
edu/).

The ADNI study has developed composite cognitive scores to assess 
multiple domains, including memory, executive function, language, 
and visuospatial skills. These scores are derived from a combination 
of standardized neuropsychological tests, selected to comprehensively 
evaluate each domain (Crane et al., 2012; Gibbons et al., 2012; Choi 
et al., 2020). A list of the individual tests contributing to each domain is 
provided in Supplementary Table 1. Since these measures were derived 
by the ADNI study, we refer to them as ADNI-MEM (memory), ADNI-EF 
(executive function), ADNI-LAN (language), and ADNI-VS (visuospatial 
functioning) throughout this paper. These composite scores provide 
standardized, robust measures across cognitive domains, aiding in the 
early detection and monitoring of cognitive decline in dementia.

To calculate the rate of cognitive decline, we measured the change 
in each cognitive domain and divided it by the time over which the 
change occurred. This time frame varied for each individual, as we used 
the last available follow-up as the endpoint. Additionally, we ensured 
that the final follow-up was no less than 2 years for all participants.

2.3. Plasma biomarkers

In the ADNI study, plasma was collected according to the ADNI 
procedures manual. Detailed information about the acquisition and 
analysis methods can be found on the ADNI website available at: https:
//adni.loni.usc.edu/methods/documents/.

Plasma A𝛽42/40 levels were analyzed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) as previously described (Ovod 
et al., 2017) and we obtained them from the ADNI depository (files: 
batemanlab_20190621.csv, batemanlab_20221118.csv). The samples 
with QC Status ‘‘Failed’’ were excluded. Plasma p-tau181 levels were 
measured using the Single Molecule Array (Simoa) technique (Karikari 
et al., 2020) and obtained from the ADNI depository (file: UGOTp-
tau181_06_18_20.csv). Plasma NfL was analyzed by the Single Molecule 
array (Simoa) technique by using a combination of monoclonal anti-
bodies and purified bovine NfL as a calibrator. Plasma NfL was obtained 
from the ADNI_BLENNOWPLASMANFLLONG_10_03_18.csv file.
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Table 1
Baseline characteristics of the study cohorts: The reported values for continuous measures are reported as mean(standard deviation). CN: cognitively normal, SMC: subjective 
memory concern (participants with self-reported significant memory concern), MCI: mild cognitive impairment, EMCI: early MCI, LMCI: late MCI. Classification of EMCI and LMCI 
is done by ADNI based on the WMS-R Logical Memory II Story A score. The specific cutoff scores were as follows (out of a maximum score of 25): EMCI was assigned for a score 
of 9–11 for 16 or more years of education, a score of 5–9 for 8–15 years of education, or a score of 3–6 for 0–7 years of education. LMIC was assigned for a score of ≤ 8 for 
16 or more years of education, a score of ≤ 4 for 8–15 years of education, or a score of ≤ 2 for 0–7 years of education (Edmonds et al., 2019). The A𝛽-positivity is determined 
based on the global PET SUVR measure; further details are provided in the Supplementary Materials, Section ‘PET Measurements’.
 Baseline
characteristics

Cohort 1 (without A𝛽42/40) Cohort 2 (with A𝛽42/40)

 CN SMC EMCI LMCI CN SMC EMCI LMCI  
 Sample size (N) 162 90 244 129 110 50 154 79  
 ADNIGO/ADNI2 0/162 0/90 105/139 0/129 0/110 0/50 65/89 0/79  
 Age, years 73.3(6.4) 72.1(5.7) 71.1(7.3) 71.6 (7.7) 73.7(6.6) 71.4(5.6) 70.5(7.6) 70.4(7.6)  
 Sex, M/F 83/79 35/55 137/107 67/62 59/51 17/33 88/66 39/40  
 Education, years 16.7 (2.5) 16.8(2.5) 16.1(2.6) 16.6(2.4) 16.7(2.6) 16.3(2.4) 16.1(2.7) 17.0(2.3)  
 APOE4 (0/1/2) 117/40/5 59/30/1 142/84/18 59/52/18 79/28/3 33/16/1 95/51/11 36/30/13  
 ADNI-MEM 1.07 (0.6) 1.07(0.57) 0.62(0.57) −0.04(0.65) 1.08(0.56) 1.05(0.53) 0.61(0.56) 0.02(0.64)  
 ADNI-EF 0.71 (0.7) 0.61 (0.71) 0.39 (0.70) 0.03(0.83) 0.75(0.73) 0.65(0.69) 0.39(0.67) 0.18(0.80)  
 ADNI-LAN 0.89 (0.7) 0.76 (0.67) 0.49(0.71) 0.21(0.73) 0.98(0.72) 0.74(0.68) 0.50(0.66) 0.29(0.70)  
 ADNI-VS 0.24 (0.6) 0.18 (0.59) 0.10(0.68) −0.13 (0.76) 0.29(0.58) 0.21(0.58) 0.07(0.69) −0.09 (0.79)  
 Plasma A𝛽42/40 – – – – 0.12(0.01) 0.12(0.01) 0.12(0.01) 0.12 (0.01)  
 Plasma p-tau181 15.7 (11.0) 16.7(16.5) 16.4(10.2) 20.2(13.4) 15.2(11.0) 15.3(6.7) 16.1(10.1) 18.7(9.1)  
 Plasma NFL 35.6(23.9) 31.9 (12.6) 36.6(18.0) 39.0 (18.8) 34.8 (14.9) 32.0(11.8) 34.6(15.9) 36.3(15.8)  
 A𝛽-Positivity
(PET Global
SUVR)

47 A𝛽+,
114 A𝛽−,
1 Unknown

34 A𝛽+,
55 A𝛽−,
1 Unknown

117 A𝛽+,
126 A𝛽−,
1 Unknown

83 A𝛽+,
45 A𝛽−,
1 Unknown

34 A𝛽+,
75 A𝛽−,
1 Unknown

22 A𝛽+,
28 A𝛽−

71 A𝛽+,
82 A𝛽−,
1 Unknown

51 A𝛽+,
28 A𝛽−

 

2.4. MRI measures

We used the volumetric and thickness measures derived from CAT12 
toolbox (https://neuro-jena.github.io/cat/ Version 8.1) using the de-
fault settings (Gaser et al., 2024): For 136 volume measures, the 
T1-weighted MRI were segmented into grey matter (GM) and white 
matter (WM) and non-linearly normalized to a stereotactic space us-
ing the shooting approach (Ashburner and Friston, 2011). Based on 
spatially normalized GM and WM segments, the neuromorphometrics 
atlas was used to extract the regional volumes. The atlas is derived from 
the maximum probability tissue labels derived from the ‘‘MICCAI 2012 
Grand Challenge and Workshop on Multi-Atlas Labeling’’ http://www.
neuromorphometrics.com/2012_MICCAI_Challenge_Data.htm with the 
MRIs from OASIS project and the labeled data provided by Neuro-
morphometrics, Inc. (Neuromorphometrics.com) under academic sub-
scription. Following Karaman et al. (2022), we included intra-cranial 
volume (ICV) as one of the MRI features, rather than serving solely 
as a normalization factor, alongside regional volumetric measures. The 
cortical thickness values (Dahnke et al., 2013) were computed and 
registered to the FSaverage surface template (Yotter et al., 2011), where 
DK40 atlas (Desikan et al., 2006) was used to define 69 regionally 
averaged cortical thickness measurements.

2.5. Machine learning framework

We developed a machine learning framework to predict the rate of 
cognitive decline based on four composite cognitive scores: memory 
(ADNI-MEM), executive function (ADNI-EF), language (ADNI-LAN), 
and visuospatial (ADNI-VS) abilities. The framework involves two main 
stages. In the first stage, ridge linear regression (RLR) was applied to 
MRI data to calculate an MRI score. In the second stage, the MRI score is 
combined with other predictors including demographics, APOE4, base-
line composite cognitive scores, and plasma measures, using random 
forest (RF) regression. This two-stage modeling strategy was employed 
to reduce the dimensionality of the MRI data and to prevent it from 
dominating the predictive model due to its high feature count. Impor-
tantly, each MRI score was specifically trained to reflect its association 
with the target cognitive outcome. For instance, the MRI score for 
ADNI-MEM was trained to predict the rate of memory decline, while 
distinct scores were trained to predict rates of decline in executive 
function, visuospatial skills, and language. This outcome-specific strat-
egy tailors the MRI representation to each target domain, ensuring the 
55 
final model captures the most relevant structural information for that 
specific cognitive outcome.

To ensure robust model performance, we employed nested and 
stratified cross-validation (CV) with two loops. The inner CV loop was 
used for calculating MRI score and the outer CV loop was used to split 
data into main training and test sets. This approach allowed us to build 
the MRI model while ensuring that the same data was not used for both 
training and predicting MRI scores in the training set, thus preventing 
overfitting. This two-stage process is illustrated in Fig.  1. The same 
framework was used to predict the rate of cognitive decline based on 
the four composite cognitive scores. The participants in all experiments 
were the same, and the experiments were conducted in parallel for both 
Cohort 1 and Cohort 2.

We designed four models with different feature combinations. The 
first model, the basic model, was trained using only demographic 
information, APOE4, and the baseline composite cognitive scores. The 
second model, the plasma model, included plasma biomarkers and 
predictors used in the basic model. The third model, the MRI model, in-
corporated MRI data with the predictors of the basic model. Finally, the 
fourth model, termed the combined model, utilized all available pre-
dictors: demographic data, APOE4, composite cognitive scores, plasma 
biomarkers, and MRI data. Our two-stage framework, illustrated in Fig. 
1, was applied to experiments involving MRI measures (i.e., the MRI 
and combined models). For the basic and plasma models, which did 
not include MRI data, we used a random forest regression to predict the 
rate of cognitive decline. The R codes are available at ‘‘https://github.
com/ElahehMoradi/Cognitive-decline-prediction’’.

2.6. Implementation and performance evaluation

To divide the data into training and test sets, we used two nested 
and stratified cross-validation loops, each with 10 folds. In the inner 
CV loop, the MRI-training set (outer loop) was further divided into 
MRI-training and test sets (inner CV) to learn the MRI model with the 
RLR approach and predict MRI scores for the training set (outer loop). 
We used the inner CV loop to ensure that the same dataset was not 
used for both learning the MRI model and calculating the MRI score 
in the training set, thus avoiding overfitting. After calculating the MRI 
scores for the training data (outer loop), the MRI training set of the 
outer CV loop was used to predict the MRI score for the MRI test set 
of the outer CV loop. The MRI scores of the training data were then 
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Fig. 1. Schematic representation of the regression framework.
combined with other predictors of the training dataset, and the MRI 
score of the test set was combined with other predictors of the test set. 
We then used the new training set with all the predictors, including the 
MRI score, to design a Random Forest regression model and predict the 
rate of cognitive decline in the test set. The Random Forest regression 
parameters were set to their default values, except for the number of 
trees, which was increased to 1000 to enhance the model’s stability 
and improve the accuracy of feature importance determination. It is 
important to note that the test set of the outer loop was not used in 
any learning stages and was used only for evaluating the model. The 
implementation steps are visualized in Fig.  1.

The performance of the model was evaluated based on the cross-
validated Pearson correlation coefficient (R) and the mean absolute 
error (MAE) between the estimated and true rate of cognitive decline. 
The reported results are averages over 10 nested 10-fold CV runs to 
minimize the effect of random variation.

To compare the correlation coefficient we used methods described 
by Diedenhofen and colleagues (Diedenhofen and Musch, 2015). All 
the analyses were done using R (version 4.1.1), with the follow-
ing packages: glmnet (Friedman et al., 2021), caret (Kuhn, 2008), 
cocor (Diedenhofen and Musch, 2015), pROC (Robin et al., 2011), 
Daim (Potapov et al., 2009), ggplot2 (Wickham, 2011), and complex-
heatmap (Gu et al., 2016), survival (Therneau and Lumley, 2015).

3. Results

3.1. Predicting the rates of cognitive decline in individuals without dementia

We predicted the rate of cognitive decline in different cognitive 
domains based on ADNI-MEM, ADNI-EF, ADNI-LAN, and ADNI-VS 
composite cognitive scores. As explained in the Methods, we designed 
four models with different feature combinations for each regression 
experiment. Fig.  2 shows the results of all these computational analyses. 
These results are the average over 10 repeated 10-fold cross-validation 
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analyses for each experiment. The p-values for comparing the per-
formance of different models are provided in Supplementary Tables 
2&3.

According to Fig.  2 (panel a), the prediction performance in cohorts 
1 and 2 was similar, despite the absence of A𝛽42/40 in Cohort 1. 
The following analysis is based on Cohort 1 due to the larger sample 
size. For predicting the rate of change in the ADNI-MEM measure, the 
average correlation score across 10 computation runs, derived from the 
basic model, was 0.38 with a 95% confidence interval (CI) of 0.30 to 
0.45. The average MAE was 0.11 (95% CI of 0.10 to 0.12). Adding 
plasma biomarkers to the basic model (plasma model) significantly 
improved performance, with an improved correlation score of 0.45 
(95% CI of 0.38 to 0.52) and a decreased MAE of 0.10 (95% CI of 
0.10 to 0.11). Similarly, adding MRI data to the basic model (MRI 
model) significantly improved performance to a correlation score of 
0.46 (95% CI of 0.39 to 0.54) and an MAE of 0.10 (95% CI of 
0.10 to 0.11). Although the correlation score of the MRI model was 
slightly higher than that of the plasma model, the difference was 
not statistically significant. Finally, the combined model integrating 
plasma and MRI measures to the basic model, provided significantly 
improved prediction performance compared to all other models (basic, 
plasma, and MRI models), with an average correlation score of 0.50 
(95% CI of 0.44 to 0.57) and an MAE of 0.10 (95% CI of 0.09 to 
0.11). The improvement in the correlation score of the combined model 
compared to the plasma and MRI models indicates that plasma and 
MRI measures provide different information for predicting the rate of 
cognitive decline based on the ADNI-MEM score, and both data types 
are important for this prediction task.

Interestingly, within other cognitive domains, the cognitive changes 
could be predicted as well based on the basic model than based on 
the model integrating biomarker information (see Fig.  2 a). The only 
exception to this was ADNI-LAN, where the MRI and combined models 
offered a significant advantage over the basic model.

Fig.  2 panel b presents a scatter plot of the actual cognitive decline 
rate versus the predicted rate using the combined model in Cohort 1. 
Individuals from different diagnostic groups are labeled with different 
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Fig. 2. Predicting the rates of cognitive decline in individuals without dementia: (a) Bar plots with 95% confidence interval error bars show the average correlation score across 
10 computation runs for predicting the rate of cognitive decline in both study cohorts. (b) Scatter plot for actual cognitive decline rate vs. predicted rate using the combined 
model in Cohort 1, with correlation score and 95% CIs. (c) Heatmap of correlation values derived from the univariate analysis of the actual rate of cognitive decline and the 
predictors based on all four composite cognitive scores in Cohort 2. (d) The importance of different predictors calculated by RF regression models for each experiment using the 
combined model in Cohort 2, which includes all predictors, including plasma A𝛽42/40. (MRI score is the mean value of the cross-validated MRI score derived by applying RLR 
on MRI data in test subsets).
colors, and a linear fit is plotted for each diagnosis group. In the 
ADNI-MEM score, a clear relationship between the rate of cognitive 
decline and the diagnostic groups existed. As expected, there was a 
higher correlation between the observed and predicted values in the 
MCI groups (EMCI and LMCI) compared to cognitively unimpaired 
(CU) individuals (CN and SMC). It is also evident that the rate of 
cognitive change was markedly smaller in the CU group, catalyzing 
more challenging prediction task in these individuals. This effect is also 
visible in the ADNI-EF and, on a smaller scale, in the ADNI-LAN score, 
but not in the ADNI-VS score.

We investigated the contribution of individual variables in predict-
ing the rate of cognitive decline. Fig.  2, panel d & Supplementary Fig. 
1, panel b, show the importance of different variables derived from 100 
RF models, based on 10 runs of 10-fold cross-validation. The bar plot 
displays the mean importance of each variable across 100 computation 
runs. These results are from the combined model using Cohort 2, which 
includes the A𝛽42/40 measure. The MRI score represents the mean 
value of the cross-validated MRI score, derived from RLR applied to 
the MRI data in the test subset, as described in the methods section.

For predicting the rate of cognitive decline based on the ADNI-MEM 
score, the MRI score emerged as the most important predictor. While it 
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did not hold the highest importance in other cognitive domains, it still 
played a significant role in predicting ADNI-LAN performance and, to 
a lesser extent, in the ADNI-EF score. Interestingly, APOE4 was found 
to be significant only for ADNI-MEM, with no notable importance for 
other cognitive scores. Furthermore, the baseline ADNI-MEM score was 
the strongest predictor for cognitive decline rate in the ADNI-EF and 
ADNI-LAN domains, surpassing the predictive value of the baseline 
ADNI-EF and ADNI-LAN scores.

Among the plasma biomarkers, A𝛽42/40 had the lowest importance 
in predicting the rate of cognitive decline across different composite 
cognitive scores. This might explain why the prediction performance 
in Cohort 1 and Cohort 2 was similar, despite the absence of the 
A𝛽42/40 measure in Cohort 1. In contrast, plasma NfL and p-tau181 
were identified as important features for predicting the rate of cognitive 
decline based on ADNI-MEM, ADNI-EF, and ADNI-LAN scores, but not 
for ADNI-VS score. In the case of ADNI-VS, all plasma biomarkers and 
MRI scores had low importance, indicating that baseline composite 
cognitive scores contributed the most to the model. Univariate analysis 
of the actual rate of cognitive decline with different predictors revealed 
that neither plasma biomarkers nor MRI scores showed significant cor-
relations with ADNI-VS (Fig.  2, panel c & Supplementary Fig. 1, panel 
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Table 2
Correlation-based comparison of cognitive decline prediction using domain-specific MRI scores vs. AD-related MRI measures 
(hippocampal and ventricular volumes).
 Cognitive domain With MRI score With AD-related MRI measures P-value 
 ADNI-MEM 0.50 (0.44, 0.57) 0.48 (0.41, 0.55) 0.132  
 ADNI-EF 0.42 (0.35, 0.50) 0.38 (0.30, 0.46) 0.014  
 ADNI-LAN 0.49 (0.43, 0.56) 0.44 (0.36, 0.51) 0.001  
 ADNI-VS 0.40 (0.34, 0.45) 0.41 (0.35, 0.47) 0.227  
a). This finding aligns with the low contribution of these variables to 
the ADNI-VS model. In contrast, plasma biomarkers and MRI measures 
demonstrated stronger correlations with ADNI-MEM and, to a certain 
degree, with ADNI-EF and ADNI-LAN, which explains their greater 
contribution to model performance in these cognitive domains.

Previous studies have shown that the plasma p-tau181/A𝛽42 ratio is 
linked to amyloid-𝛽 status and future cognitive decline (Fowler et al., 
2022). However, because it is highly correlated with the A𝛽42/A𝛽40 
ratio (Campbell et al., 2021), its incremental value over A𝛽42/A𝛽40 
ratio remains uncertain. To address this, we performed an additional 
analysis in Cohort 2, replacing the separate p-tau181 and A𝛽42/40 
variables with the single p-tau181/A𝛽42 ratio in both our plasma-
only and combined models. The change in predictive performance 
was minimal. In the plasma-only model, the ADNI-MEM correlation 
increased slightly from 0.45 to 0.46, with comparable small gains for 
ADNI-EF, ADNI-LAN, and ADNI-VS. In the combined model, ADNI-
MEM increased from 0.51 to 0.52, while other domains remained stable 
or improved marginally. These results suggest that replacing individual 
biomarkers with the p-tau181/A𝛽42 ratio does not substantially affect 
model performance. Complete results are provided in Supplementary 
Table 4.

We also evaluated how individual MRI features contribute to
domain-specific MRI scores. Supplementary Fig. 2 shows bar plots 
of the top 20 features with the highest average absolute regression 
coefficients, based on 100 Ridge Linear Regression models (from 10 
repetitions of 10-fold cross-validation). Each bar represents the mean 
absolute coefficient, with error bars indicating the standard deviation. 
As shown in Supplementary Fig. 2, the most influential regions align 
closely with domain-specific expectations. In the ADNI-MEM model, the 
hippocampus volumes emerged as the most important MRI predictors, 
consistent with the well-known role of hippocampus in memory pro-
cesses. Additional influential regions included the middle and inferior 
temporal gyri, amygdala, and basal forebrain, all regions previously 
implicated in memory function. For ADNI-EF, cortical thickness mea-
sures prominently contributed, particularly from the temporal pole, 
middle temporal, and inferior parietal cortices. Important volumetric 
measures included the middle temporal gyrus, basal forebrain, and 
hippocampus. In the ADNI-LAN model, the basal forebrain was the 
most influential feature, followed closely by volumetric and cortical 
thickness measures in the middle temporal gyrus, hippocampus, and 
inferior temporal cortex. For ADNI-VS, feature importance plots showed 
considerable variability, reflected in higher standard deviations, indi-
cating instability and less consistent selection of brain regions. The 
middle occipital gyrus was among the top contributors, aligning with its 
role in visuospatial processing. Nevertheless, as highlighted in the main 
results (Fig.  2 a), incorporating MRI data did not enhance predictive 
performance for visuospatial cognitive decline. This outcome corre-
sponds to the observed feature instability and suggests that MRI-derived 
features provided more noise than predictive value in the visuospatial 
domain.

Since our primary focus is on predicting AD dementia, we investi-
gated whether models using domain-specific MRI scores perform better 
than those using known AD-related MRI measures. We selected two 
AD-related measures: the volumes of the hippocampus and ventricles. 
This experiment was conducted using Cohort 1, as it focuses on MRI 
data (not plasma measures) and includes a larger sample size. Table  2 
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presents results from combined models predicting the rate of cognitive 
decline across different cognitive domains, comparing performance 
when using the MRI score versus when replacing it with hippocampal 
and ventricular volumes. Our results show that, except for ADNI-VS, 
using domain-specific MRI scores improved the prediction of cogni-
tive decline in all other domains. The significant improvements were 
seen for ADNI-EF and ADNI-LAN. As shown in Supplementary Fig. 2, 
these MRI scores include contributions from multiple brain regions 
beyond the hippocampus, suggesting that a broader, domain-specific 
view of brain structure provides more predictive power than traditional 
AD-related measures.

3.2. Predicting the rates of cognitive decline in cognitively unimpaired and 
MCI groups separately

We extended our analysis by predicting the rate of cognitive decline 
in CU and MCI groups separately. Participants in both cohorts were 
divided into cognitively unimpaired (CN and SMC) and MCI groups 
(EMCI and LMCI), and the combined method was applied to each 
group individually. The results are illustrated in Fig.  3. As expected, 
predicting the rate of cognitive decline was markedly more challenging 
in the CU individuals than the MCI individuals across all four cognitive 
domains.

For predicting the rate of cognitive decline in the ADNI-MEM do-
main, the average correlation score across 10 computation runs in 
Cohort 1 was 0.17 (95% CI of 0.06 to 0.28) for the CU group and 
0.53 (95% CI of 0.45 to 0.61) for the MCI group. For ADNI-EF, the 
correlation score was 0.19 (95% CI of 0.07 to 0.32) for the CU group 
and 0.46 (95% CI of 0.37 to 0.54) for the MCI group. The correlation 
score based on ADNI-LAN was 0.22 (95% CI of 0.11 to 0.32) for the 
CU group and 0.52 (95% CI of 0.45 to 0.59) for the MCI group. The 
results for ADNI-VS differed from other cognitive scores, with a smaller 
difference in correlation scores in CU and MCI groups. For ADNI-VS, the 
correlation score was 0.33 (95% CI of 0.24 to 0.42) for the CU group 
and 0.40 (95% CI of 0.32 to 0.47) for the MCI group.

Fig.  3b shows the scatter plot for one computation run with median 
performance across 10 computation runs for actual versus predicted 
rates of cognitive decline based on different composite cognitive scores, 
with a linear fit plotted for each group. A clear difference can be seen 
for ADNI-MEM, ADNI-EF, and ADNI-LAN scores between the CU and 
MCI groups, but not for the ADNI-VS score. These results underscore 
that predictive performance in the visuospatial domain differs from that 
of memory, executive function, and language in the context of dementia 
progression. While ADNI-MEM, ADNI-EF, and ADNI-LAN scores showed 
strong associations with diagnostic group (CU vs. MCI), ADNI-VS did 
not. This distinction is further supported by Supplementary Tables 5 
and Supplementary Fig. 3, which present rates of cognitive decline 
across domains separately for CU and MCI groups.

3.3. Predicting the rates of cognitive decline in A𝛽-positive and A𝛽-negative 
groups separately

We extended our analysis by stratifying participants based on base-
line amyloid status, categorizing them into A𝛽-positive and A𝛽-negative 
groups. Most participants in both cohorts had A𝛽 status determined 
by PET imaging (see section ‘‘PET measurements in the supplement). 
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Fig. 3. Predicting the rates of cognitive decline in CU and MCI groups separately. (a) Bar plots with 95% confidence interval error bars show the average correlation score across 
10 computation runs for predicting the rate of cognitive decline in CU and MCI groups, both separately and combined, in Cohort 1 and Cohort 2. (b) Scatter plot for actual 
cognitive decline rate vs. predicted rate using the combined model in Cohort 1 in CU and MCI groups, with correlation score and 95% CIs.
However, data were missing for 4 individuals in Cohort 1 and 2 
individuals in Cohort 2; these individuals were excluded from the 
stratified analyses. The combined model was then applied separately 
to each group across both cohorts. Results are shown in Fig.  4. Overall, 
the A𝛽-negative group showed lower predictive performance than the 
A𝛽-positive group for ADNI-MEM, ADNI-EF, and ADNI-LAN. In the 
ADNI-VS domain, the performance was similar in both groups.

In Cohort 1, the average correlation (across 10 runs) for predict-
ing memory decline (ADNI-MEM) was 0.29 (95% CI: 0.20–0.38) in 
A𝛽-negative participants, compared to 0.49 (95% CI: 0.40–0.57) in A𝛽-
positive participants. For ADNI-EF, the correlations were 0.26 (95% CI: 
0.13–0.36) in A𝛽-negative participants, and 0.36 (95% CI: 0.25–0.44) 
in A𝛽-positive participants. In the ADNI-LAN, the values were 0.32 
(95% CI: 0.23–0.41) for A𝛽-negative and 0.47 (95% CI: 0.39–0.55) 
for A𝛽-positive participants. In contrast, ADNI-VS showed similar pre-
dictive performance across groups, with correlations of 0.38 (95% CI: 
0.30–0.46) in A𝛽-negative and 0.37 (95% CI: 0.28–0.47) in A𝛽-positive 
participants. Similar patterns were observed in Cohort 2.
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A scatter plot (Fig.  4b) illustrates actual versus predicted decline 
rates for one run (with median performance across 10 computation 
runs), showing a clear difference between A𝛽-positive and A𝛽-negative 
groups in the ADNI-MEM, ADNI-EF, and ADNI-LAN, but not in the 
ADNI-VS. Consistent with findings from the CU and MCI group analy-
ses, these results indicate that predictive performance in the visuospa-
tial domain behaves differently from memory, executive function, and 
language when examined in the context of dementia-related pathol-
ogy. ADNI-MEM, ADNI-EF, and ADNI-LAN scores were strongly linked 
to A𝛽-positivity, whereas ADNI-VS showed no such association. Sup-
plementary Tables 6 and Supplementary Fig. 3 further support this 
distinction by detailing domain-specific rates of cognitive decline in 
A𝛽-positive and A𝛽-negative groups.

3.4. Prediction of progression to MCI/dementia

To assess the effectiveness of our cognitive decline prediction mod-
els in predicting dementia progression, we evaluated the predictive 
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Fig. 4. Predicting the rates of cognitive decline in A𝛽-positive and A𝛽-negative groups separately. (a) Bar plots with 95% confidence interval error bars show the average correlation 
score across 10 computation runs for predicting the rate of cognitive decline in A𝛽-positive and A𝛽-negative groups, both separately and combined, in Cohort 1 and Cohort 2. (b) 
Scatter plot for actual cognitive decline rate vs. predicted rate using the combined model in Cohort 1 in A𝛽-positive and A𝛽-negative groups with correlation score and 95% CIs.
power of estimated cognitive decline rates, derived from various com-
posite cognitive scores. This analysis was conducted across both CU 
individuals and those with MCI.

In Cohort 2, which included 160 cognitively unimpaired individuals 
(CN and SMC), 30 transitioned to MCI or dementia during the follow-
up period, and 96 remained stable with a follow-up duration of at 
least four years. In the MCI group (EMCI and LMCI), 65 individuals 
progressed to dementia, and 120 remained with MCI status.

For the analysis, predicted cognitive decline rates were categorized 
into 3 tertiles. Individuals in the first tertile had the lowest predicted 
rate of cognitive decline, while those in the last tertile had the highest 
predicted rate. Fig.  5 shows the Kaplan–Meier survival analysis results 
and log-rank tests across tertiles, focusing on the predicted rate of the 
ADNI-MEM cognitive score for Cohort 2. The survival curves reveal sig-
nificant differences among the tertiles in both CU and MCI individuals, 
as determined using all four models (log-rank p< 0.001). Results for 
other cognitive scores and experiments with Cohort 1 are provided in 
the supplementary materials (Supplementary Fig. 4–7)

The predicted ADNI-MEM score rate from the basic model demon-
strated a C-index (concordance index) of 0.68 for predicting progression 
to MCI/dementia in CU individuals. When plasma biomarkers were 
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added (plasma model), the C-index improved to 0.72. The MRI model 
showed a slightly lower C-index of 0.69. However, the combined model 
yielded an improvement over the plasma model, achieving a C-index 
of 0.76, indicating better predictive accuracy. For predicting dementia 
progression in individuals with MCI, the basic model yielded a C-index 
of 0.76. Adding plasma biomarkers did not enhance predictive accuracy 
(C-index of 0.74), but the MRI model offered a slight improvement 
with a C-index of 0.77. The combined model also achieved the highest 
performance for the MCI group, with a C-index of 0.79. Although our 
cognitive decline prediction model based on ADNI-MEM was primarily 
designed to estimate memory domain decline rates, rather than directly 
predict progression to dementia, it still showed strong predictive power 
for early-stage dementia, even in CU individuals.

Table  3 summarizes the hazard ratios (HRs) for the predicted rates 
of cognitive decline, as measured by the ADNI-MEM score, across 
tertiles using four models: basic, plasma, MRI, and combined. The 
first tertile, representing individuals with the lowest predicted rate 
of decline, served as the reference group. Among CU individuals, the 
combined model demonstrated that those in the highest tertile (fastest 
predicted decline) had a risk of progressing to MCI/dementia that was 
more than 33 times greater than those in the lowest tertile (slowest 
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Fig. 5. Kaplan–Meier survival curves for progression to MCI/dementia in CU and MCI groups in cohort 2: The predicted rate of cognitive decline in ADNI-MEM score was divided 
into 3 tertiles (low, middle, high). Vertical tick marks on lines indicate times at which the individual was censored. p-values are for log-rank tests among the tertiles. (a) in CU 
individuals for progression to MCI/dementia, (b) in MCI individuals for progression to dementia. Basic model: Demographics, APOE4, Composite cognitive scores. Plasma model: 
Demographics, APOE4, Composite cognitive scores, plasma biomarkers. MRI model: Demographics, APOE4, Composite cognitive scores, MRI data. Combined model: Demographics, 
APOE4, Composite cognitive scores, plasma biomarkers, MRI data.
predicted decline). The risks for the MRI and plasma models were 7.9 
and 9.7 times higher, respectively. Similarly, for MCI individuals, the 
combined model showed that those in the highest tertile had a risk of 
progressing to dementia that was over 29 times greater compared to the 
lowest tertile. The MRI and plasma models indicated risks of 21 and 14 
times higher, respectively. The results in Cohort 1 were also similar to 
those in Cohort 2 (Supplementary Fig. 4).

The predicted rate of cognitive decline in other cognitive domains 
was not as strong as the one based on ADNI-MEM for predicting 
progression to dementia, especially in the early stages. The survival 
curves for the predicted rate of cognitive declines based on ADNI-EF, 
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ADNI-VS, and ADNI-LAN show significant differences among the three 
groups in MCI individuals, as determined using all four models, but not 
in CU individuals (Supplementary Fig. 4–7).

4. Discussion

The objectives of this study were: (1) to investigate the role of 
plasma biomarkers, in combination with other non-invasive measures, 
in predicting the rate of cognitive decline in individuals without de-
mentia; and (2) to predict the rate of decline across different cognitive 
domains — memory, executive function, language, and visuospatial 
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Table 3
Progression risk to dementia. Hazard ratios (HR) with 95% confidence intervals, p-values, and events/participants were calculated using Cox regression analysis. The first quartile 
is used as a reference. Events/Participants refers to the comparison group.
 Group Basic model Plasma model MRI model Combined model
 HR 

(95%CI)
p-val Events/ 

N
HR
(95%CI)

p-val Events/
N

HR 
(95%CI)

p-val Events/
N

HR 
(95%CI)

p-val Events/
N

 

 Risk of progression to MCI/dementia in CU individuals
 Low vs.
Middle

3.02 
(0.93–9.85)

0.066 4/42 vs. 
9/42

4.51 
(1.24–16.49)

0.023 3/42 vs. 
10/42

2.72 
(0.80–9.27)

0.110 4/42 vs. 
8/42

16.21 
(2.08–126.18)

0.008 1/42 vs. 
11/42

 

 Low vs.
High

6.71 
(2.20–20.47)

0.001 4/42 vs. 
17/42

9.68 
(2.80–33.48)

<0.001 3/42 vs. 
17/42

7.88 
(2.51–24.71)

<0.001 4/42 vs. 
18/42

33.12 
(4.39–250.12)

0.001 1/42 vs. 
18/42

 

 Risk of progression to dementia in MCI individuals
 Low vs.
Middle

2.78 
(1.14–6.77)

0.024 7/62 vs. 
16/61

4.80 
(1.81–12.75)

0.002 5/62 vs. 
21/61

5.66 
(1.90–16.89)

0.002 4/62 vs. 
17/61

7.49 
(2.22–25.33)

0.001 3/62 vs. 
19/61

 

 Low vs.
High

11.01 
(4.91–24.69)

<0.001 7/62 vs. 
42/62

14.43 
(5.62–37.04)

<0.001 5/62 vs. 
39/62

21.02 
(7.48–59.07)

<0.001 4/62 vs. 
44/62

29.45 
(9.06–95.74)

<0.001 3/62 vs. 
43/62

 

abilities — and assess their associations with progression to dementia. 
To achieve this, we developed a two-stage machine learning frame-
work. In the first stage, regularized linear regression (RLR) was applied 
to MRI data to derive an MRI score. In the second stage, the MRI 
score was combined with plasma biomarkers, demographics, APOE4, 
and baseline composite cognitive scores using random forest regression.

Our findings indicate that plasma biomarkers are effective in pre-
dicting distinct patterns of domain-specific cognitive decline and can 
potentially be used to predict progression to dementia, even in cogni-
tively unimpaired individuals. While plasma biomarkers may not fully 
capture all the pathological changes occurring in the brain, they serve 
as a non-invasive source of information, offering valuable insights into 
disease mechanisms before the clinical onset of dementia (Brand et al., 
2022; Palmqvist et al., 2019; Zhang et al., 2024; Yu et al., 2024; 
Smirnov et al., 2022; Mattsson-Carlgren et al., 2023).

We conducted multiple experiments using various feature combina-
tions to identify the biomarkers most relevant to predicting cognitive 
decline. The ADNI-MEM-based model showed significant improvement 
when additional features were added, whereas other composite cogni-
tive measures exhibited minimal or no gains. Specifically, for predicting 
decline based on the ADNI-MEM score, the correlation between ac-
tual and predicted rates increased from 0.38 in the basic model to 
0.45 in the plasma model, which included plasma biomarkers along 
with demographics, APOE4, and baseline composite cognitive scores. 
Incorporating MRI data into the plasma model resulted in a further 
significant improvement, increasing the correlation to 0.50. In contrast, 
the inclusion of plasma or MRI features did not significantly improve 
predictions for other composite scores. An exception was the ADNI-
LAN score: the combined model increased the correlation from 0.43 
to 0.49, a significant gain over the basic model. All the correlation 
scores were clearly above zero and thus all the models offered mean-
ingful insight to the future. Cognitive change in individuals without 
dementia is subtle and variable, making the prediction of the change 
challenging (Marinescu et al., 2020).

Assessing the importance of different features in the combined 
model revealed that while plasma biomarkers were useful for predicting 
the rate of cognitive decline, they were not the top predictors. Instead, 
the MRI and baseline composite cognitive scores were the strongest 
predictors, along with plasma biomarkers NfL and p-tau 181. Among 
the plasma biomarkers, the A𝛽42/40 ratio was less predictive than NfL 
and p-tau 181. NfL consistently ranked among the top four predictors 
for memory (ADNI-MEM) and executive function (ADNI-EF) decline. 
This aligns with recent studies highlighting the limited predictive value 
of amyloid-beta measures compared to markers of neuronal injury and 
tau pathology. Both NfL and p-tau 181 have been linked to faster cog-
nitive decline and increased risk of progression to dementia (Mendes 
et al., 2024; Smirnov et al., 2022). Interestingly, for the visuospatial 
domain (ADNI-VS), baseline cognitive scores were the most important 
predictors, while MRI, plasma biomarkers, and APOE4 had minimal 
impact. These findings highlight that the predictive value of biomarkers 
varies across cognitive domains.
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We investigated the performance of cognitive decline rate predic-
tion across different domains separately for CU and MCI groups. By 
using datasets with varying levels of cognitive impairment, we aimed 
to investigate the relationship between each cognitive measure and 
dementia. The results showed strong associations between the infor-
mation detected by ADNI-MEM, ADNI-EF, and ADNI-LAN scores for 
different diagnostic groups, but not ADNI-VS. Prediction performance 
was significantly lower in the CU group compared to the MCI group. 
No significant relationship was observed between the prediction of 
ADNI-VS decline rate and diagnostic group. While our main analy-
ses focused on individuals without dementia (as defined by cognitive 
assessments), we conducted analyses stratified by A𝛽-positivity. Pre-
dictive performance was weaker in A𝛽-negative individuals, consistent 
with the difficulty of detecting decline in the absence of biologi-
cal signs of AD. Results from both stratifications, by cognitive status 
and A𝛽 status, were generally consistent. Prediction in CU individuals 
proved especially difficult, with very low correlations between pre-
dicted and actual decline, particularly in the memory domain. Although 
prediction was more challenging in A𝛽-negative individuals than A𝛽-
positive ones, performance remained reasonably robust. While most 
A𝛽-negative participants were cognitively healthy, a substantial propor-
tion were individuals with MCI, which may explain why prediction in 
the A𝛽-negative group was more successful than in the CU group alone.

We assessed the effectiveness of our prediction models for cognitive 
decline across different domains in predicting dementia progression 
in CU and MCI groups using survival analysis. Across all models, 
which varied in feature combinations and composite cognitive scores, 
significant predictive value was demonstrated for dementia progression 
in the MCI group. The predicted rate based on the ADNI-MEM score 
demonstrated the highest predictive power, while those based on the 
ADNI-VS score showed the lowest. In contrast, predicting progression 
to MCI/dementia in CU individuals proved more challenging. Only 
the predicted rate based on ADNI-MEM showed significant predictive 
power for dementia progression in this group. Among the models 
tested, the combined model demonstrated the highest predictive accu-
racy. Since memory impairment is often the earliest symptom of AD, 
driven by neurodegeneration in regions such as the hippocampus, the 
ADNI-MEM-based predictions were particularly effective in identifying 
progression to MCI or dementia, even in individuals without cognitive 
impairment.

Predictions for visuospatial decline diverged from those of other 
cognitive domains. While ADNI-MEM, ADNI-EF, and ADNI-LAN scores 
showed strong associations with diagnostic status (CU vs. MCI) and 
A𝛽-positivity, ADNI-VS did not. In survival analyses, predicted memory 
decline had the highest power to predict progression to MCI or demen-
tia, whereas visuospatial predictions had the lowest. This suggests that 
declines in memory, executive function, and language are more tightly 
linked to early disease stages, while visuospatial decline, although 
predictable, has limited utility as an early marker. Feature-importance 
analyses confirmed that the baseline ADNI-VS score was the primary 
driver of predicted visuospatial change, with other baseline cognitive 
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scores contributing modestly. Plasma biomarkers, MRI features, and 
APOE4 status added minimal predictive value for this domain. Al-
though ADNI-VS predictions correlated with actual decline, they had 
limited clinical relevance for identifying early-stage dementia.

Previous research on plasma biomarkers in AD has primarily fo-
cused on detecting brain amyloidosis, often using the plasma A𝛽42/40 
ratio to detect PET or CSF A𝛽 positivity (West et al., 2021; Brand 
et al., 2022; Palmqvist et al., 2019). Fewer studies, however, have 
explored the role of plasma biomarkers in predicting cognitive decline. 
For example, Mattsson-Carlgren et al. (2023) evaluated combinations 
of plasma biomarkers, including p-tau 217, to predict cognitive de-
cline in A𝛽-positive CU individuals using MMSE and modified Preclin-
ical Alzheimer Cognitive Composite (mPACC) scores. Their findings 
highlighted the strong predictive power of plasma p-tau 217 in de-
tecting cognitive decline in preclinical AD patients. Similarly, Zhang 
et al. (2024) investigated the association of plasma biomarkers such 
as A𝛽42/40, p-tau 181, NfL, and glial fibrillary acidic protein (GFAP) 
with cognitive decline across different domains. Their study showed 
that memory decline was most strongly associated with p-tau 181, 
while attention, executive function, and visuospatial abilities were 
more closely linked to NfL levels. A𝛽42/40 emerged as the most ef-
ficient marker for distinguishing memory decline, whereas GFAP was 
particularly effective in identifying decline patterns in language and 
visuospatial functions. Our study shares similarities with Zhang et al. 
(2024) in assessing cognitive decline across domains but differs in 
methodology. We employed machine learning for predictive modeling, 
prioritizing high-accuracy forecasting of future outcomes, rather than 
exploratory analysis aimed at understanding relationships and generat-
ing hypotheses (Shmueli, 2010). Additionally, compared to Zhang et al. 
(2024), we assessed the impact of combining plasma biomarkers with 
other non-invasive measures to improve predictive accuracy. Finally, 
we evaluated the effectiveness of our predictive models in forecasting 
progression to MCI or dementia in CU and MCI groups. These anal-
yses offer a more nuanced understanding of the potential of plasma 
biomarkers in early AD detection.

Our findings emphasize the strengths and limitations of plasma 
biomarkers in dementia research. While they excel in predicting mem-
ory decline and dementia progression, their predictive power is limited 
in non-memory domains. This may be due to the focus on AD-specific 
plasma biomarkers, i.e., A𝛽42/40, p-tau 181, and NfL, which primarily 
reflect amyloid plaques, tau aggregation, and neurodegeneration—core 
pathological features of AD. These biomarkers are highly relevant for 
detecting AD-related pathology and demonstrate stronger predictive 
value for cognitive decline in memory-related domains. However, they 
tend to be less predictive in non-memory domains like visuospatial 
abilities, where neurodegeneration may not be as directly influenced by 
amyloid or tau pathology. This likely explains the reduced effectiveness 
of plasma biomarkers in predicting cognitive decline in these areas and 
their limited performance in early AD prediction.

A possible limitation of this study is its focus on AD-specific
biomarkers, which restricted our ability to explore relationships be-
tween other pathologies and types of dementia across different cogni-
tive domains. Moreover, since our experiments were conducted using 
the ADNI cohort, which predominantly focuses on AD, the results 
may not generalize well to non-memory domains where AD-specific 
biomarkers are less relevant. The memory domain is most closely 
associated with AD, which explains why our predictions were more 
accurate in this area. These findings underscore the need for future 
studies that incorporate a broader range of biomarkers and pathologies 
to enhance understanding and prediction of cognitive decline across 
various types of dementia.

5. Conclusion

Our study investigates the role of plasma biomarkers, particularly 
when combined with non-invasive measures such as MRI data and 
63 
cognitive assessments, in predicting domain-specific cognitive decline 
and progression to dementia. We introduce three key contributions: 
(1) modeling the rate of cognitive decline rather than single-time-point 
outcomes, (2) building domain-specific models for memory, executive 
function, language, and visuospatial abilities, and (3) linking predicted 
decline rates to real-world clinical progression, showing that individ-
uals predicted to decline more rapidly are significantly more likely to 
progress from CU to MCI/dementia or from MCI to dementia.

Among the various cognitive domains, memory decline was the 
most accurately predicted, with plasma biomarkers (A𝛽42/40,
p-tau181, NfL) providing substantial added value, likely due to their 
strong association with AD pathology. However, plasma biomarkers 
were less predictive for non-memory domains. While MRI emerged as a 
stronger overall predictor compared to plasma biomarkers, combining 
these biomarkers with APOE4 and cognitive scores proved especially ef-
fective. This multimodal approach had a synergistic effect, particularly 
in predicting memory decline and assessing the risk of progression to 
MCI/dementia in CU individuals.

Our findings also emphasize the challenge of predicting cognitive 
decline in the early stages of AD, particularly among CU individuals. 
However, when CU individuals are analyzed alongside those who have 
slightly progressed toward AD, such as those in the MCI stage, ML 
algorithms can help predict cognitive changes to some extent and even 
predict progression to MCI/dementia with a certain level of accuracy. 
This has important clinical implications, as current methods struggle 
to accurately predict cognitive decline in CU individuals, an area of 
critical importance given the development of AD-modifying therapies 
that are most effective when administered during the earliest stages of 
the disease. Future research should focus on individuals near the A𝛽-
positivity threshold, as this subgroup may offer critical insights into the 
early continuum of disease progression.
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