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Abstract
Music-making and engagement in music-related activities have shown procognitive benefits for healthy and pathological 
populations, suggesting reductions in brain aging. A previous brain aging study, using Brain Age Gap Estimation (Brain-
AGE), showed that professional and amateur-musicians had younger appearing brains than non-musicians. Our study sought 
to replicate those findings and analyze if musical training or active musical engagement was necessary to produce an age-
decelerating effect in a cohort of healthy individuals. We scanned 125 healthy controls and investigated if musician status, 
and if musical behaviors, namely active engagement (AE) and musical training (MT) [as measured using the Goldsmiths 
Musical Sophistication Index (Gold-MSI)], had effects on brain aging. Our findings suggest that musician status is not 
related to BrainAGE score, although involvement in current physical activity is. Although neither MT nor AE subscales 
of the Gold-MSI are predictive for BrainAGE scores, dispositional resilience, namely the ability to deal with challenge, is 
related to both musical behaviors and sensitivity to musical pleasure. While the study failed to replicate the findings in a 
previous brain aging study, musical training and active musical engagement are related to the resilience factor of challenge. 
This finding may reveal how such musical behaviors can potentially strengthen the brain’s resilience to age, which may tap 
into a type of neurocognitive reserve.

Keywords Machine-learning · Brain aging · Brain Age Gap Estimation · Musical training · Active musical engagement · 
Resilience

Introduction

The global aging population is increasing along with a con-
current rise in the incidence of neurodegenerative diseases. 
The additional social burden and economic implications of 
this rise have revealed the need to explore the efficacy of 
potential brain-sparing activities that can aid in the main-
tenance of cognitive health. Healthy aging is typically 
accompanied by decreasing cognitive functioning, includ-
ing declining processing speed, inhibition, attention, work-
ing and episodic memory, semantic fluency, visuospatial 
and visuoconstructional abilities, as well as difficulties with 
executive functioning, and social understanding (Borella 

et al. 2008; Salthouse 2010; Hartshorne and Germine 2015; 
Fjell et al. 2017; Sutcliffe et al. 2020). Healthy brain aging is 
characterized by a decline in brain volume over time and can 
be determined via structural magnetic resonance imaging 
(MRI). A meta-analysis of 52 longitudinal studies revealed 
brain volume atrophy including decreasing gray and white 
matter volume (Hedman et al. 2012). Further, an Enhancing 
Neuroimaging Genetics through Meta-Analysis (ENIGMA) 
Consortium study assessed subcortical volumes from 18,605 
individuals across the lifespan and found that the thalamus, 
hippocampus, and amygdala begin to decline in the sixth 
decade of life, and enlargements of the lateral ventricles 
infused with increasing amounts of cerebral spinal fluid are 
found over the life course (Dima et al. 2021). Studies quan-
tifying the effects of age on brain volume have used volu-
metric analysis as a means to predict the risk of developing 
neurodegenerative disease. Brain Age Gap Estimation, or 
BrainAGE, is one such model that takes into account healthy 
brain maturation data from T1-weighted structural MRI 
scans and models brain age estimates based on relevance 
vector regression (Franke et al. 2010).
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Music-based activities, such as music therapy, music-
making or training, or mere active engagement in music have 
been shown to improve cognition, emotion, and well-being 
among older adults (Piccirilli et al. 2021), yet how musi-
cal training affects brain plasticity and brain efficiency is 
still under investigation. The aim of the current study is to 
inquire if a background of music-making/musical training 
or current active musical engagement can be protective for 
brain aging in healthy adults as measured by a brain aging 
algorithm, namely BrainAGE. Additionally, the current 
study aims to replicate the findings from a previous brain 
aging study (Rogenmoser et al. 2018) and to test if in the 
absence of musical training, if active musical engagement 
alone is sufficient to produce an age-decelerating effect in 
healthy adults.

Musical training and music‑making

Due to the multi-modal applications of musical training 
on the brain, musical expertise has been recognized to be 
a valuable model for studying structural brain plasticity 
mechanisms (Wan and Schlaug 2010), specifically train-
ing-induced neuroplasticity. Musical training is related to 
structural and functional alterations in networks throughout 
the brain as music is able to engage various systems such 
as the auditory, visual, motor, memory, attention, emotion, 
and reward networks (Sutcliffe et al. 2020). Consequently, 
active engagement in music can increase demand on brain 
networks by stimulating multi-sensory integration, learn-
ing, reward processing, and cognition as a means to bolster 
brain activity in adults (Sutcliffe et al. 2020). The rewarding 
nature of music can promote further musical learning, and 
further drive neuroplastic changes associated with musical 
training (Penhune 2019). Furthermore, musical training has 
protective effects by enhancing cognitive functioning in 
healthy aging (Abrahan et al. 2019) and building the brain’s 
resilience to age (Hanna-Pladdy and Gajewski 2012). Effects 
on structural brain plasticity have been found throughout the 
lifespan (Hyde et al. 2009; Wan and Schlaug 2010), and the 
degree of plasticity changes are highly variable and typically 
reduce with age (Pauwels et al. 2018). It has been suggested 
that music-related increases in brain volume and structural 
connectivity can offset age-related cognitive decline and 
may delay the onset of clinical symptoms related to neu-
rodegeneration (Fauvel et al. 2013). Musicians appear to 
be less susceptible to age-related deterioration in the brain 
(Sluming et al. 2002), showing neurocognitive advantages in 
tests of reasoning (Brandler and Rammsayer 2003) percep-
tual speed (Helmbold et al. 2005), visual and verbal working 
memory (Berti et al. 2006; George and Coch 2011; Hanna-
Pladdy and Gajewski 2012), as well as a preservation of 
inhibitory regulation (Amer et al. 2013; Grassi et al. 2017; 
Moussard et al. 2016). Although high-activity musicians 

reap additional benefits in visuospatial abilities in relation 
to low-activity musicians (Strong and Mast 2019), research 
suggests that regardless of activity status, musicians show 
preserved cognitive functioning in advanced age (Hanna-
Pladdy and MacKay 2011). Overall, musical training seems 
to be positively associated with neurocognitive benefits.

Moreover, music-making, which is regarded as an active 
process of playing and making music, is generally accepted 
as a brain-sparing activity that has shown promise in improv-
ing neurocognitive health. A meta-analysis exploring the 
effects of musical practice in cognitively healthy individuals 
aged 59 years or older found that music-making had posi-
tive effects on processing speed, attention, verbal working 
memory, and inhibition (Román-Caballero et al. 2018). A 
review by Särkämö investigated the influence of musical 
activities (e.g., playing, singing, listening, and dancing) and 
results showed overall positive effects on brain aging, spe-
cifically in dementia and stroke populations (Särkämö 2018). 
Another review (Sutcliffe et al. 2020) found that although 
music-making may show potential benefits in neuropsy-
chological aging, various methodological concerns have 
been cited such as low sample sizes, lack of appropriate 
control groups, and longitudinal interventions. The claims 
that music-making may have plasticity effects on the aging 
brain needs further investigation.

Brain Age Gap Estimation or BrainAGE

Modeled as a neuroimaging biomarker of age-related dete-
rioration, Brain Age Gap Estimation, or BrainAGE for short, 
is a well-validated (Franke and Gaser 2012) machine-learn-
ing algorithm, and is used as a marker of accelerated brain 
atrophy (Franke et al. 2010). BrainAGE was developed using 
a machine-learning pattern recognition method, specifically 
relevance vector regression (RVR) (Tipping 2001) to pro-
vide a brain age metric known as the brain age gap (BAG) 
reflecting the differences between chronological (biological) 
and estimated brain ages. The larger the difference between 
these estimates, the more age-accelerating (positive scores) 
or age-decelerating (negative scores) the interpretation of 
the estimate.

The BrainAGE method was the first to establish refer-
ence curves for healthy brain maturation from childhood 
to older age (Franke et al. 2010) and has validated its use 
with regards to brain maturation in children and adolescents 
(Franke et al. 2012; Franke and Gaser, 2019). The BrainAGE 
method has effectively examined aberrant aging resulting in 
predictions of worsening cognitive functions and possible 
conversions to serious neurodegenerative diseases (Löwe 
et al. 2016; Gaser et al. 2013; Franke and Gaser 2012) . Due 
to its sensitivity, BrainAGE has outperformed biomarkers 
based on cerebrospinal fluid (e.g., Amyloid beta (Aβ42) 
total and phosphorylated tau) and has shown its ability to 
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predict aberrant progression from Mild Cognitive Impair-
ment to Alzheimer’s Disease (AD) (Gaser et al. 2013). A 
study revealed that the prediction of conversion to AD was 
more accurate using BAG compared to neuropsychological 
test scores, even when Apolipoprotein E (APOE) status was 
unknown (Löwe et al. 2016) .

BrainAGE has been used across various domains includ-
ing in metabolic disorders such as type 2 diabetes mellitus 
(Franke et al. 2013) and obesity (Mcwhinney et al. 2021), 
psychiatric clinical populations such as schizophrenia and 
bipolar disorder (Nenadić et al. 2017), and has been investi-
gated in relation to certain lifestyle factors like meditation, 
music-making, smoking, physical activity, alcohol consump-
tion, and social integration (Luders et al. 2016; Rogenmoser 
et al. 2018; Bittner et al. 2021). In terms of the effects of 
music-making on BrainAGE, Rogenmoser and colleagues 
(Rogenmoser et al. 2018) conducted a study in amateur and 
professional musicians and found larger negative BAG in 
musicians compared to healthy controls, citing the largest 
age-decelerating effects in amateur-musicians. Both ama-
teur and professional musicians had an estimated 4 years 
younger appearing brains than the healthy controls, who 
showed no difference in terms of their chronological and 
brain-estimated age.

Current study aims and hypotheses

The present study explores the role of two different types 
of musical behaviors on brain aging in healthy adults. We 
administered questions from the frequently used, and well-
validated self-report Goldsmiths Musical Sophistication 
Index (Gold-MSI v1.0, 11 October 2012), which captures 
several aspects of musical experience. The Gold-MSI has 
been shown to be suitable for assessing musicality in non-
professional musicians (Baker et al. 2020), and has sufficient 
sensitivity to be used in professional musician groups and in 
pathological populations (e.g., amusics) (Müllensiefen et al. 
2014). The Gold-MSI reflects inherent or implicit musical 
skills related to the notion of “musical sleepers” (Law and 
Zentner 2012) (i.e., individuals listeners with more adept 
listening skills). Music instructs the perceptual system via 
exposure, and has shown top-down interactions from corti-
cal to subcortical areas, instructing the perceptual system to 
better encode the features of the incoming stimulus (Kraus 
and Chandrasekaran 2010).

For the purpose of our study, we used two subscales from 
the Gold-MSI, namely musical training (MT) and active 
engagement (AE), in addition to selected questions from 
the Emotions subscale, which we used to compute an addi-
tional measure of musical pleasure, called Musical Anhedo-
nia (MA). We wanted to measure how musical training and 

active engagement affect healthy brain aging. We hypoth-
esized that participants with higher levels of musical training 
would reflect more negative BAG as compared to those with 
less musical exposure. The same thinking was applied to 
those with higher levels of active engagement.

Lastly, exploratory analyses were undertaken investigat-
ing the relationship between psychological resilience and 
the aforementioned study measures (BrainAGE, MT, AE, 
MA). In specific, we used the Dispositional Resilience Scale 
(DRS-15, Hystad et al. 2010) to assess “hardiness”, which is 
defined as a combination of personality traits that function 
as a resilience resource during and after the encountering 
of potentially traumatizing life events (Kobasa et al. 1983).

Materials and methods

Participants

125 healthy subjects (55 males and 70 females, mean age 
of 53.04 years (SD = 17.13) ranging between the ages of 
22 and 89 years) provided signed informed consent. Demo-
graphic information can be found in Table 1. Exclusion cri-
teria included (1) a history of psychopathology, (2) traumatic 
brain injury, (3) neurological illness, (4) sensory disorders 
(including hearing impairment), (5) vascular disorders, (6) 
claustrophobia or the (7) presence of ferromagnetic metal in 
the soft tissue of the body incompatible with MR scanning.

Music questionnaire

We administered the Goldsmiths Musical Sophistication 
Index (Gold-MSI), v1.0, 11 October 2012 (https:// media. 
gold- msi. org/ test_ mater ials/ GMS/ docs/ gms_ docum entat 
ion_ en. pdf) for our study. The Gold-MSI is a validated self-
report scale that inspects various aspects of musical experi-
ence across five subscales (e.g., Active Engagement, Per-
ceptual Abilities, Emotions, Singing Abilities, and Musical 
Training). The current study selected items using the Gold-
MSI configurator (https:// shiny. gold- msi. org/ gmsic onfig 
urator/). Selected questions included three questions from 
the Emotions subscale and two full subscales, namely active 
engagement and musical training for a total of 19 questions. 
See Suppl. Mat. for full musical background questionnaire.

The AE subscale is defined as the level of musical 
engagement including reading, writing, internet activity, lis-
tening, and income spent on music and music events attend-
ance. The MT subscale is defined as the level of musical 
dedication according to time (peak hour per day and amount 
of training in years) spent on musical training and number 
of instruments played, including voice (Müllensiefen et al. 

https://media.gold-msi.org/test_materials/GMS/docs/gms_documentation_en.pdf
https://media.gold-msi.org/test_materials/GMS/docs/gms_documentation_en.pdf
https://media.gold-msi.org/test_materials/GMS/docs/gms_documentation_en.pdf
https://shiny.gold-msi.org/gmsiconfigurator/
https://shiny.gold-msi.org/gmsiconfigurator/


 Brain Structure and Function

1 3

2014). Both subscales are closely associated with motor and 
somatosensory activities (Müllensiefen et al. 2014). In short, 
musical training reflects the formal amount of musical train-
ing received, while active engagement reflects the time and 
effort spent on music-related activities.

Each item was scored on a seven-point Likert scale 
(1: “absolutely disagree” to 7: “absolutely agree”), with 
higher mean scores reflecting higher levels of active 
engagement, musical training, and musical anhedonia. 
Mean subscale scores are calculated using the sum of the 
values and are divided by the total number of questions 
for that subscale. Other more quantitative questions were 
scored between one through seven relating to different 
value categories quantifying years or hours of music train-
ing or daily listening (e.g., “I have had _ years of formal 
training on a musical instrument (including voice) during 
my lifetime”, “I can play _ musical instruments”, “I listen 
attentively to music for 0–15 min/15–30 min/30–60 min
/60–90 min/2 h/2–3 h/4 h or more per day”). Responses 
were entered into the Gold-MSI scoring template to ana-
lyze the data obtained by the participants (https:// shiny. 
gold- msi. org/ gmsis corer/).

Definition of groups

We used the musical training subscale of the Gold-MSI 
to group participants into non-musician and amateur-
musicians categories. Participants were categorized as 

amateur-musicians if they self-identified as a musician 
and had previously received compliments for their talents 
as musical performers. In addition, each participant had 
at least between 2 and 3 years of regular, daily practice of 
a musical instrument (including voice), practiced between 
1 and 1.5 h or more per day on primary instrument at peak 
of interest, had between 1 and 2 years or more of formal 
training in music theory, 2 years or more of formal training 
on a musical instrument (including voice), and could play 
at least two instruments. The other participants (i.e., par-
ticipants who did not meet the above requirements) were 
categorized as non-musicians. (see Suppl. Mat.).

Musical anhedonia

An additional computed score reflecting musical pleas-
ure, namely Musical Anhedonia (MA), was also calculated 
using the Gold-MSI configurator (https:// shiny. gold- msi. 
org/ gmsic onfig urator/) which selected questions from the 
Gold-MSI, and modeled after the Barcelona Music Reward 
Questionnaire (Mas-Herrero et al. 2013). The MA subscale 
is defined as the level of musical pleasure that is experi-
enced when participating in music-related activities, in 
addition to the emotional valence engendered from music. 
Higher scores of MA reflect lower levels of musical anhe-
donia and thus show sensitivity to musical pleasure, while 
low MA scores reflect higher levels of musical anhedonia, 
reflecting insensitivity to musical pleasure. Reliability sta-
tistics were performed and Cronbach’s alpha reliability 

Table 1  Demographic 
characteristics

Listed are the demographic descriptive statistics including means (M), standard deviation (SD), and sample 
size (n)

Demographic characteristics Non-musicians (N = 61) Amateur-
musicians 
(N = 64)

Age 54.36 (18.06) 51.78 (16.24)
Gender (female/male) 35/26 35/29
Handedness (right/left) 58/3 57/7
Years of education 14.61 (2.98) 16.17 (3.43)
Medication (no/yes)
 Blood pressure 54/7 56/8
 Anxiety 61/0 63/1
 Cholesterol 56/5 61/3
 Allergy 57/4 58/6
 Metabolism 55/6 61/3
 Antidepressants 59/2 60/4

Singing alone (no/yes) 18/43 3/61
Singing in public (no/yes) 38/23 17/47
Dance (no/yes) 21/40 20/44
Currently physically active (no/yes) 14/47 14/50
Grew up with music in the home (no/yes) 18/43 6/58
Parents sung lullabies (no/yes) 16/45 11/53

https://shiny.gold-msi.org/gmsiscorer/
https://shiny.gold-msi.org/gmsiscorer/
https://shiny.gold-msi.org/gmsiconfigurator/
https://shiny.gold-msi.org/gmsiconfigurator/
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was found to be 0.813 for seven total items. For calcula-
tion of the MA subscale complete with questions used and 
Cronbach’s alpha reliability scores, see Suppl. Mat.

Resilience questionnaire

We administered the 15-item Norwegian version of the 
Dispositional Resilience Scale (DRS-15, Hystad et al. 
2010) to assess “hardiness”. Hardiness is defined as a 
grouping of personality characteristics that function as a 
resilience resource when encountering stressful life events 
(Kobasa 1979; Kobasa et al. 1982). “Persons high in hardi-
ness involve themselves in whatever they are doing (com-
mitment), believe and act as if they can influence events 
forming their lives (control), and consider change to be 
not only normal but also a stimulus to development (chal-
lenge)” (Kobasa et al. 1983). The DRS-15 includes three 
subscales: commitment, control, and challenge.

Brain structure

MRI acquisition

For all participants, MR data were acquired at the Hauke-
land University Hospital in Bergen, Norway. Neuroim-
aging was performed on a 3.0 Tesla (T) GE Discovery 
MR 750 scanner (General Electric Medical Systems, Mil-
waukee, WI, United States) using a 32-channel head coil. 
T1-weighted anatomical scans were acquired using Sagit-
tal 3D T1-weighted fast spoiled gradient-echo (FSPGR) 
sequence [repetition time/echo time (TR/TE) = 6.9/3.0 ms; 
slice thickness = 1.0  mm3; field of view = 25.6 cm; 256 by 
256 matrix; flip angle = 12°, inversion time (TI) = 450 ms. 
Participants were shown nature landscapes and chose to 
listen to instrumental music of their choice between six 
music genres (e.g., pop, rock, folk, jazz, classical, and 
world) for a total of 9 min.

MRI data preprocessing and data reduction

All MR images were converted from Dicom to Nifti files 
using dcm2niix (Chris Rorden, version v1.0.20170724, 
https:// www. nitrc. org/ proje cts/ mricr ogl/) in MRIcroGL 
and then defaced using mri_deface (https:// surfer. nmr. 
mgh. harva rd. edu/ fswiki/ mri_ deface) in FreeSurfer version 
6.0.0 (https:// surfer. nmr. mgh. harva rd. edu/). Preprocessing 
of T1-weighted images in SPM12 (http:// www. fil. ion. ucl. 
ac. uk/ spm) and the CAT12 (http:// dbm. neuro. uni- jena. de) 

toolbox (Gaser et al. 2022) in Matlab R2021b (The Math-
Works Inc., Natick, MA, USA). All T1-weighted images 
were corrected for bias-field inhomogeneities (Van Leemput 
et al. 1999; Cohen et al. 2000) and spatially normalized. The 
images were then segmented into gray matter (GM), white 
matter (WM) and CSF (Ashburner and Friston 2005) which 
also included an approach accounting for partial volume 
effects (Tohka et al. 2004) by applying adaptive maximum 
a posteriori estimations (Rajapakse et al. 1997) and a hidden 
Markov Random Field Model (Cuadra et al. 2005) which has 
been described in (Franke et al. 2010). GM maps were regis-
tered using an affine registration and smoothed with a 4 mm 
and 8 mm full-width-at-half-maximum kernel and further 
resampled to a spatial resolution of 4 mm and 8 mm. Next, 
since neighboring voxels are spatially correlated and, there-
fore, contain redundant information, principal component 
analysis (PCA) was conducted to reduce data dimensions 
using the “Matlab toolbox for Dimensionality Reduction” 
(https:// lvdma aten. github. io/ drtoo lbox/).

BrainAGE framework

The BrainAGE framework is based on relevance vector 
regression (Tipping 2001) that transforms training data into 
a high-dimensional space (Bennett and Campbell 2000) and 
then further translates features learned from a training sam-
ple for an outcome variable (e.g., age) onto an unknown test 
sample.

For training, we used 1094 healthy subjects (480 
males/614 females, mean age/SD 53.1 ± 21.2 years, range 
18–94 years) from several databases: IXI (https:// brain- devel 
opment. org/ ixi- datas et/), ADNI (https:// adni. loni. usc. edu/) 
and OASIS (https:// www. oasis- brains. org/). The 8 different 
models (4 mm and 8 mm for resampling and smoothing, 
gray and white matter) were combined to one single Brain-
AGE value using a general linear model that maximized 
BrainAGE differences between all groups. The difference 
between the estimated age and the chronological age yields 
the so-called brain age gap estimate (BrainAGE).

Positive BrainAGE scores (years/months) reflect accel-
erated aging whereby the estimated age is higher than the 
chronological age. Negative BrainAGE scores reflect the 
opposite, reflecting decelerated aging where the estimated 
age is lower than the chronological age. For example, a 
BrainAGE score of + 3.0 of an individual with a chrono-
logical age of 40 would present as having a brain age of 
43 years. Lastly, a correction was made for a quadratic age 
trend and was applied using spm_detrend (SPM12, The 
Wellcome Dept. of Imaging Neuroscience, London; www. 
fil. ion. ucl. ac. uk/ spm).

https://www.nitrc.org/projects/mricrogl/
https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface
https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface
https://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de
https://lvdmaaten.github.io/drtoolbox/
https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
https://adni.loni.usc.edu/
https://www.oasis-brains.org/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Performance of the BrainAGE model for brain aging 
from early to late adulthood

In a previous brain aging study, it was shown that, in terms 
of the performance of the BrainAGE model for brain aging 
from early into late adulthood, the measure of accuracy of 
age estimation resulted in a mean absolute error (MAE) 
of approximately 5 years and an overall correlation of 
r = 0.92, with a 95% confidence interval for the prediction 
of age being stable across age range (Franke et al. 2010).

Statistical analyses

All statistical analyses were carried out using SPSS soft-
ware (IBM Corp. Released 2020. IBM SPSS Statistics 
for Windows, Version 27.0. Armonk, NY: IBM Corp) 
and JASP (JASP Team (2022). JASP (Version 0.16.3). 
Addressing our main hypotheses, to identify possible 
predictors of BrainAGE scores, a forward stepwise lin-
ear regression was computed with BrainAGE scores as 
dependent variable, and the following independent vari-
ables: musical training, active engagement, and years of 
education, as well as gender as factor (years of education 
and gender were added in order to control for a possible 
influence of these variables; for additional analyses see 
Suppl Mat.). In addition, BrainAGE scores were compared 
between the groups of non-musicians and amateur-musi-
cians using analysis of covariance (ANCOVA) and inde-
pendent samples t-tests. Shapiro–Wilk tests for normality 
were performed for all t-test comparisons. All ANCOVA 
contrasts were performed using gender as a fixed factor 
and years of education as covariate. Since some of the 
items on the Gold-MSI were not normally distributed, 
such as “I do not consider myself a musician”, “years of 
training” or “years of music theory”, tests of normality 
were performed on the Gold-MSI subscales using Kol-
mogorov–Smirnov tests. Therefore, any correlation analy-
ses using the Gold-MSI subscales were performed using 
non-parametric correlations (using Spearman’s rho (rs)).

Results

Musical training, active musical engagement 
and BrainAGE scores

To investigate whether musical training or active engage-
ment in music predict BrainAGE scores, we computed 
a stepwise linear regression (with BrainAGE scores as 
dependent variable and MT scores, AE scores, and years of 
education as independent variables). This regression did not 
indicate a significant result (R2 = 0.01, p = 0.81; for complete 

statistics see Suppl. Mat.). Thus, our hypothesis that a back-
ground of musical training or active engagement in music 
would influence BrainAGE scores was rejected.

Musician status and BrainAGE scores

In addition, to provide a comparison with the previous 
BrainAGE study by Rogenmoser et  al. (2018), we also 
computed a t-test comparing the BrainAGE scores between 
non-musicians (M = 0.56, SD = 5.14, N = 61) and amateur-
musicians (M = − 0.65, SD = 6.07, N = 64). This t-test did not 
yield a significant result (t(123) = 1.20, p = 0.23, two-tailed). 
(For additional statistics, see Suppl. Mat.). These results are 
consistent with the stepwise linear regression indicating that 
BrainAGE scores are not impacted by a background of musi-
cal training, nor musical engagement. Mean Gold-MSI and 
musical anhedonia scores for non-musician and amateur-
musicians are listed in Table 2 (Fig. 1).

Musical anhedonia and BrainAGE scores

To investigate whether musical anhedonia predicts Brain-
AGE scores, we computed a stepwise linear regression (with 
BrainAGE scores as dependent variable, independent varia-
bles: musical anhedonia scores and years of education). This 
regression did not indicate a significant result (R2 = 0.04, 
p = 0.89). (For additional statistics including direct com-
parisons between non-musicians and amateur-musicians, 
see Suppl. Mat.).

Exploratory analyses

Music and resilience

We performed Spearman’s rank correlations investigating 
the relationship between AE, MT, and MA on the DRS-
15 subscales (control, challenge, and commitment) and 
found a significant correlation to the subscale of challenge 
(Spearman’s correlation coefficients can be found in Table 3 

Table 2  Mean Gold-MSI and musical anhedonia scores for non-musi-
cians and amateur-musicians

Listed are the means and standard deviations ((SD) reported in brack-
ets) of the Gold-MSI subscales (MT and AE) and computed subscale 
MA for non-musicians and amateur-musicians

Baseline characteristics Non-musicians 
(N = 61)

Amateur-
musicians 
(N = 64)

Musical training 1.94 (0.62) 4.67 (1.11)
Active engagement 3.43 (1.10) 4.52 (1.15)
Musical anhedonia 4.22 (0.99) 5.17 (1.09)
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and Pearson’s r correlation coefficients can be found in 
Suppl. Mat., along with additional statistical analyses).

Resilience and BrainAGE scores

To explore whether resilience predicts BrainAGE scores, 
we computed a stepwise linear regression (with BrainAGE 
scores as dependent variable and resilience scores and years 
of education as independent variables). The regression anal-
ysis did not indicate that resilience predicted BrainAGE 
scores (R2 = 0.01, F(2, 122) = 0.35, p = 0.71). (For additional 
statistics including direct comparisons between non-musi-
cians and amateur-musicians, see Suppl. Mat.).

Lifestyle factors and BrainAGE scores

Exploratory analyses were performed to generate hypoth-
eses for future studies; therefore, results will be minimally 
discussed. Firstly, we explored whether those who were cur-
rently engaged in physical activity had significantly different 
BrainAGE scores than those who were not physically active.

An independent samples t-test examining lifestyle fac-
tors like self-reported current physical activity against 
BrainAGE scores revealed that healthy adults who were 
currently engaged in physical activity had lower Brain-
AGE scores (M = −0.63, SD = 5.75, N = 97) than those who 

were not physically active (M = 1.95, SD = 4.85, N = 28), 
t(123) = 2.17, p = 0.03, two-tailed. (See Suppl. Mat, for vio-
lin plots and complete statistics).

A further independent samples t-test was performed 
examining the self-reported use of allergy medication in 
comparison to BrainAGE scores. Results showed that indi-
viduals who used allergy medication had lower BrainAGE 
scores (M =−3.71, SD = 4.24, N = 10) versus those who did 
not (M = 0.26, SD = 5.66, N = 115), t(123) = 2.17, p = 0.03, 
two-tailed. (See Suppl. Mat. for complete statistics).

Discussion

Musician status on BrainAGE

The present study investigates the relationship between 
aspects of musical sophistication as measured by two sub-
scales of the Gold-MSI self-inventory of musical sophis-
tication index (Goldsmiths Musical Sophistication Index; 
Gold-MSI; (Müllensiefen et al. 2014), namely active engage-
ment and musical training, and a brain aging metric as meas-
ured by BrainAGE (Franke et al. 2010). The study failed 
to replicate the findings from a previous BrainAGE and 
music-making study (Rogenmoser et al. 2018) revealing no 
association between musician status and BrainAGE scores. 
Whether participants had previous musical training or were 
currently actively engaged in music, the brain age scores 
were not significantly affected. However, we found a slight 
(non-significant) trend suggesting more negative brain age 
scores among amateur-musicians (M = −0.65) compared to 
(M = 0.56) non-musicians, reflecting a possible age-decel-
erating effect of musical training on brain age scores. How-
ever, certain sample differences must be outlined between 
our study and the Rogenmoser et al. (2018) study. The ages 
of their sample ranged between 17 and 39 years of age, with 
means of each group around 25 years of age. In contrast, 
our sample ranged between 22 to 89 years of age, with non-
musicians and amateur-musicians having mean ages of 54 
and 51 years, respectively. Our sample selection may have 
neutralized potential effects of musician status on Brain-
AGE scores because those with a musical background may 
have spent many years without concurrent practice. How-
ever, a strength of the current study is that the large age 
range may allow for better quantification of musical training 

Fig. 1  Distribution of the BrainAGE scores, separately for non-musi-
cians and amateur-musicians. Each circle represents the BrainAGE 
score of an individual (in years, indicating the gap between chrono-
logical and estimated brain age). Positive scores reflect an age-accel-
erating brain effect (i.e., the age of the brain is older than the actual 
age), while negative scores reflect an age-decelerating brain effect

Table 3  Spearman’s rank 
correlation matrix

*Correlation is significant at the 0.05 level (2-tailed)

Resilience total Commitment Control Challenge

Active engagement rs = 0.166, p = 0.06 rs = 0.144, p = 0.11 rs = 0.039, p = 0.67 rs = 0.185, p = 0.04*
Music training rs = 0.147, p = 0.10 rs = 0.084, p = 0.35 rs = −0.005, p = 0.95 rs = 0.214, p = 0.02*
Musical anhedonia rs = 0.162, p = 0.07 rs = 0.075, p = 0.40 rs = 0.088, p = 0.33 rs = 0.216, p = 0.02*
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effects for normative aging across the lifespan, and points to 
the potential beneficial effects of continuous musical prac-
tice. Potential confounding factors such as ‘age of onset’ of 
musical training and details providing training intensity lev-
els should be considered in future studies.

Goldsmiths musical sophistication index: musical 
training and active engagement on BrainAGE

We measured two subscales from the well-validated Gold-
MSI questionnaire which reflects musicality and musical 
sophistication (Müllensiefen et al. 2014), (Fiedler and Mül-
lensiefen 2015) in non-professional musician cohorts. We 
found that neither MT nor AE were correlated to BrainAGE 
score. Both the MT and AE subscales are closely associated 
with motor and somatosensory activities (Müllensiefen et al. 
2014), for example, both musical training and active musi-
cal engagement are directly related to auditory and motor 
systems, regardless of the specific activities or instruments 
that are used. As the BrainAGE metric takes into account 
whole brain volumetric data, it may not be an ideal metric 
to investigate the association between musicality and brain 
aging. Defining areas in the gray and white matter relating 
specifically to motor, somatosensory, and auditory areas 
may be preferable in future studies. For example, a study 
investigating sex differences in white matter microstructural 
alterations in regards to MT and AE of the Gold-MSI found 
that both aspects of musical sophistication were correlated 
to several white matter tracts relating to motor and soma-
tosensory functions, finding males had more significant 
white matter integrity in these areas versus females in their 
sample (Mehrabinejad et al. 2021). Outlining either white 
matter  tracts of interest using diffusion MRI, or regions 
of interest using volumetric analysis of gray matter,  that 
are directly related to motor, somatosensory, and auditory 
functions may be of interest for future work.

Further, based on a general consensus by music psycholo-
gists, “musician” status can be based on years of musical 
training for a period of at least 6 years (Zhang et al. 2020). 
The MT subscale can capture this data, however regardless 
of the amount of musical training in our sample, we did 
not see any associations with BrainAGE score. Since lit-
tle is known on how musical training affects gray matter 
structure in older adults (Chaddock-Heyman et al. 2021), 
BrainAGE estimates can reflect the general health of brain, 
including gray matter volume. In our study, we tended to be 
more conservative and although some individuals had musi-
cal training over 6 years, we still aimed to group “amateur-
musicians” if they met certain criteria using the items on 
the MT subscale. We toggled the boundary between non-
musician and amateur-musician groups, finding that despite 
levels of musical training and active musical engagement, 
both did not predict BrainAGE scores (see Suppl. Mat.). It 

may be advantageous to include ‘age of onset’ of musical 
training, intensity of musical training, a subgroup of profes-
sional musicians, and the addition of other tests of musical-
ity in future studies for better quantification of effects.

Lifestyle and physical activity on BrainAGE

Although the study did not show any significant associations 
of musical training and active musical engagement to Brain-
AGE scores, exploratory analyses suggest that healthy adults 
who were currently physically active had significantly dif-
ferent BrainAGE scores than those who were not currently 
active. A previous study (Bittner et al. 2021) that examined 
the brains of 622 older adults found physical activity to be 
predictive for BrainAGE in males (p = 0.005), but not in 
females. Controlling for gender, and years of education, our 
findings suggest that current involvement in physical activity 
was found to be predictive of BrainAGE scores (p = 0.02) 
scores for both genders.

Our study also found significantly different BrainAGE 
scores in individuals taking allergy medication compared to 
those who did not. These results are consistent with similar 
studies finding short-term fluctuations in BAG with regards 
to menstruation and the use of non-steroidal anti-inflam-
matory drugs like ibuprofen (Franke et al. 2015; Le et al. 
2018). We found that the BAG scores from individuals tak-
ing allergy medication (M = −3.71) compared to those who 
did not (M = 0.26), showed a significant effect of medication 
on BrainAGE score when controlling for gender, and years 
of education. Therefore, future studies may want to verify 
the use of: drug type, drug dosage, duration of use, and most 
recent use of pharmacological substances before brain scan-
ning, as well as menstrual cycle data. These findings reveal 
how unexplained variance due to lifestyle factors, drug use, 
and menstrual cycles may have an influence on BAG values, 
illustrating that BAG is a dynamic process which can be 
influenced by a multiplicity of variables.

Resilience, cognitive reserve, and Gold‑MSI

Interestingly, another incidental finding revealed that musi-
cal training, active musical engagement, and musical anhe-
donia were significantly correlated to dispositional resilience 
scores, namely resilience to challenge, as measured by the 
DRS-15 (Hystad et al. 2010), but not to BrainAGE scores. 
As this analysis was meant only to generate hypotheses for 
future studies, preliminary results indicate that resilience 
and music may be correlated and perhaps the concept of 
cognitive “reserve” may explain the robustness of these find-
ings suggesting that music-making may be associated with 
building resilience.

Resilience may be defined as the ability of an individual 
to maintain stable psychological functioning throughout 
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the course of adversity (Marley and Mauki 2019). Building 
resilience requires the development of internal factors such 
as self-control, emotional regulation, self-esteem, agency, 
and certain external factors such as the development of 
social skills, connections, and close relationships which 
can both serve as internal and external protective factors 
(Barankin and Khanlou 2007). Resilience, which can be both 
defined as a personality trait and as an adaptive process that 
can be developed (Harris 2008; Ong et al. 2009; MacLeod 
et al. 2016), can also be analogous to a neurocognitive met-
ric for longevity as studies have shown that adults aged 85 
and older seem to have the same or even greater capacity for 
resilience as younger people (Gooding et al. 2012; Netuveli 
et al. 2008).

The concept of reserve is explained via the individual 
variability in the functional use or structural integrity of 
the nervous system that modifies cognitive and behavioral 
abilities following the onset of brain pathology or general 
biological aging. BrainAGE scores are one example of a 
marker of brain aging that can be used as a potential metric 
for “brain reserve”. In contrast, cognitive reserve is regarded 
as an “active” mechanism for coping with brain pathology. 
This may outline why BrainAGE scores were not related to 
musical training nor active engagement in music.

In contrast, our findings suggest that active engagement, 
musical training, and musical anhedonia were related to 
resilience to challenge. Perhaps both the domain of adapta-
tion to challenge and musical proficiency are related to the 
process of learning and potentially how the successful adap-
tation to stress may widen the capacity for cognitive flexibil-
ity (McEwen et al. 2015). In a review on resilience building 
through music and motion, Nijs and Nicolaou (2021) suggest 
how music-making and resilience are intimately connected. 
Not only can music provide pleasure and meaning (Lamont 
2011), but it can also contribute to social relatedness which 
can aid in the expression of one’s identity and values, all 
while forging connection with others (Schäfer et al. 2013). 
The active engagement with music, particularly in group 
settings (e.g., choirs), contributes both internal and external 
protective factors of resilience which is known to support 
longevity (MacLeod et al. 2016).

Limitations and future directions

Health and disease are not binary classifications but the 
result of complex interactions between various factors over 
long time spans. Most brain aging studies have been exclu-
sively correlational, and findings describing the effects of 
lifestyle factors on brain age have added complexity in how 
the concept of brain aging and the use of such metrics, such 
as the brain age gap, BAG, are interpreted. In addition, stud-
ies analyzing menstrual cycle and the use of NSAID drugs 

(Franke et al. 2015),(Le et al. 2018) showcase that Brain-
AGE estimation can be temporarily affected, either increased 
or decreased, and thus natural fluctuations based on certain 
drugs or lifestyle factors must be taken into consideration.

The predictive accuracy of brain aging algorithms has 
also been called into question. The predictive accuracy of 
brain aging algorithms differ between each model and the 
model performance can be evaluated with several metrics 
such as  R2, root mean square error, or mean absolute error 
between real and predicted estimates (MacDonald and Pike 
2021). BrainAGE has an MAE approximately between 4.5 
and 5 years (Franke and Gaser 2019), in contrast to other 
algorithms citing MAE values of 4.16 years (Cole et al. 
2017), and even 0.63 years (Beheshti et al. 2019, 2021) 
using patch-wise analysis. Therefore, other algorithms may 
provide better predictive accuracy and may be preferred in 
future studies.

A further limitation of our study was that we did not 
account for ‘age of onset’ of musical training, nor collected 
specific data on training intensity levels. Age of onset is 
considered the sensitive period whereby the strongest effects 
on brain and behavior can be determined. Age of onset prior 
to the age of seven is one of the significant predictors of spe-
cific training-induced structural brain changes (Bailey and 
Penhune 2013). Further, training intensity was only partially 
assessed via the Gold-MSI MT subscale, which can further 
be expounded upon using additional questionnaires in future 
studies.

Lastly, although participants were excluded for serious 
previous illness, no screening of subjective memory com-
plaints was performed. As dementia, specifically Alzhei-
mer’s dementia begins decades before the presentation of 
clinical symptoms (Rajan et al. 2015), the participants were 
not screened for memory problems, and could potentially 
be less “healthy” than is claimed. Therefore, future stud-
ies could add additional questionnaires such as the Subjec-
tive Cognitive Decline Questionnaire (SCD-Q) (Rami et al. 
2014), as a screening measure to ensure the sample is cog-
nitively healthy.

Conclusion

This study investigated the effects of musical training, active 
musical engagement, musical anhedonia, and dispositional 
resilience on brain aging, specifically on BrainAGE scores. 
Although brain age scores were not related to musician sta-
tus, aspects of musicality (MT and AE), nor resilience, inci-
dental findings revealed that current involvement in physical 
activity and the use of allergy medication were predictive 
of BrainAGE scores. An exploratory analysis also showed 
that musician status, MT and AE, and sensitivity to musical 
pleasure were related to the dispositional resilience scale, 
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DRS-15, particularly the challenge subscale. This may 
reflect the benefits of music-related behaviors which may 
contribute to build resilience over time, yet future studies are 
needed to investigate this potential relationship.
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