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Abstract 

Traditionally, when conducting voxel- or vertex-wise analyses in neuroimaging studies, it seemed 

imperative that brain data are convoluted with a Gaussian kernel – a procedure known as 

“spatial smoothing”. However, we argue that smoothing may be omitted entirely for the benefit 

of a dramatically enhanced regional specificity under certain conditions. We demonstrate the 

suitability of this omission by combining high-dimensional warping and threshold-free cluster 

enhancement (TFCE) in a sample of 754 brains. Our findings suggest that without the traditional 

smoothing step it is possible to dissociate neighboring brain areas with an accuracy of a single 

voxel, altogether taking the field of human brain mapping to a new level. Nevertheless, classic 

analyses based on smoothed data will continue to provide important insights, especially if 

parametric tests are required, if image data cannot be precisely aligned across individuals or 

time points, and/or if anticipated effect sizes are only small. 
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Introduction 

Spatial smoothing is a key preprocessing step in the field of brain mapping, where image data 

are convoluted with a (Gaussian) kernel before they are statistically analyzed. Smoothing 

ensures that data are normally distributed (a pre-requisite for conducting parametric tests), 

accounts for any remaining anatomical variations across brain scans after the spatial 

registration, and improves the signal-to-noise ratio (which increases the sensitivity of the 

statistical analysis). However, smoothing ultimately also poses a problem as it severely impacts 

the regional specificity of the analysis outcomes (the larger the smoothing kernel, the lower the 

specificity). As a result, when generating the statistical map, significance clusters often spread 

across anatomical boundaries (the larger the smoothing kernel, the higher the spread). That is, 

valuable regional information originally inherent in the acquired brain image gets lost during the 

smoothing procedure and spatial accuracy decreases.  

In other words, there are considerable drawbacks to smoothing and the question arises 

whether we can do without spatial smoothing. We strongly believe an omission of the 

smoothing step is a viable option, as long as the following conditions are met: (I) The applied 

statistical approach does not require a normal distribution of data; (II) brain images are close to 

perfectly aligned; (III) and statistical degrees of freedom and/or anticipated effect sizes are 

sufficiently large. Ensuring that all three conditions are met may seem challenging, but is 

possible considering new developments in the field of neuroscience and human brain mapping. 

With respect to condition I, there are numerous statistical approaches based on non-parametric 

inference (i.e., data do not need to be normally distributed), among them threshold-free cluster 

enhancement (TFCE; 1). TFCE has the additional benefit of being relatively sensitive (which is 

also relevant for condition 3), achieved by integrating cluster information (cluster size 

significance) with voxel-wise statistical inference (peak voxel significance). With respect to 
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condition II, there are a multitude of spatial registration algorithms (2) that have been 

substantially improved over the years allowing nowadays for an almost perfect overlap and 

spatial correspondence across brain images, among them high-dimensional warping (2-4). With 

respect to condition III, there is an ever increasing pool of large-scale databases, often 

containing hundreds or even thousands of brain scans, among them ADNI 

(https://adni.loni.usc.edu/) or the UK biobank (https://www.ukbiobank.ac.uk/). Compiling 

samples with higher numbers of participants / brains results in higher degrees of freedom and as 

such an appropriate sensibility of the statistical analysis. If larger sample sizes are not an option, 

naturally the detectability of effects would also be increased when expecting big effect sizes, 

such as in clinical conditions affecting the brain (e.g., neurodegenerative diseases). 

Here, we leveraged a large dataset (n=754) from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI), to test whether analyzing unsmoothed data affords an adequate sensitivity and 

leads to an improved regional specificity compared to analyzing smoothed data using standard 

kernel sizes of 2 mm, 4 mm, and 6 mm full width at half maximum (FWHM). For this purpose, we 

conducted a voxel-based morphometry (VBM) analysis, in association with TFCE (1) and high-

dimensional warping (4), comparing voxel-wise gray matter between four subgroups: healthy 

controls (CTL; n=218), individuals with stable Mild Cognitive Impairment (sMCI; n=222), 

individuals with progressive MCI (pMCI; n=130), and individuals with Alzheimer’s disease (AD; 

n=184). 

 

Results  

As shown in Figure 1, the most pronounced effects (see red clusters) were detected bilaterally in 

the hippocampus, amygdala, as well as the parahippocampal and entorhinal gyrus, with 

significantly more gray matter in CTL than in sMCI, pMCI, and AD. While these effects were 
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evident in both unsmoothed and smoothed data, findings were spread wider and clusters bled 

over anatomical boundaries in smoothed data (the larger the FWHM, the larger the spread). 

 

Fig. 1. Significance maps across the four datasets. All outcomes were derived for contrast 
CTL>sMCI>pMCI>A at p<0.0001 using TFCE and family-wise error (FWE). Unsmoothed data 
(FWHM = 0 mm) and data smoothed with different kernel sizes (FWHM = 2 mm, 4 mm, and 6 
mm. Orthogonal slices at x; y; z = -28 mm; -11 mm; -15 mm. The extra sagittal slice (x = -28) 
provides a close-up of the hippocampal complex. The color bar encodes significance (p) ranging 
between 0.0001 (blue) and 0.00001 (red).  
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Fig. 2. Density plots for regions of the hippocampal complex in unsmoothed data (FWHM = 0 
mm). Right Panel: The x-axes show the amount of voxel-wise gray matter, the y-axes the four 
different groups: HC = healthy controls, sMCI = stable mild cognitive impairment, pMCI = 
progressive mild cognitive impairment, and AD = Alzheimer’s disease. Left Panel: The arrows 
point to the approximate voxel for which the gray matter was plotted: CA1 = cornu ammonis (x; 
y; z = -28 -33 -11), DG = dentate gyrys (x; y; z = -28 -15 -20), SUB = subiculum (x; y; z = -28 -15 -
25), and AMY = amygdala (x; y; z = -28 -6 -19). The significance map is identical with the one 
provided in Figure 1 (i.e., CTL>sMCI>pMCI>AD at p<0.0001 using TFCE and FWE). 
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In contrast, as further depicted in Figure 2, in unsmoothed data, the statistical map preserved 

the regional information of the initial brain scan. It is even possible to identify and discriminate 

between significance clusters pertaining to known subfields of the hippocampal complex and 

adjacent regions, such as the cornu ammonis, the dentate gyrus, the subiculum, and the 

amygdala.  

 

Discussion  

There are usually more than a million voxels in a high-resolution brain scan. Thus, any statistical 

procedures require proper corrections for multiple comparisons. Random Field Theory (RFT), 

which accounts for spatial dependency in the data (5) has been one of the most commonly used 

correction-method in the field of human brain mapping. However, RFT-based corrections are 

only valid when image data are normally distributed and as such do not violate the assumption 

of parametric testing (6). As outlined above, spatial smoothing is a means to ensure that data 

are normally distributed, but spatial smoothing also has the negative side effect of decreasing 

the regional specificity of the findings. While smoothing on the surface is considered 

substantially less deleterious than in the volume (7, 8), high amounts of smoothing on the 

surface will still degrade the spatial localization of a cortical area. 

Here, we demonstrate that, smoothing may be omitted entirely for the benefit of a 

dramatically enhanced regional specificity. For this purpose, we analyzed both smoothed and 

unsmoothed data. In either case, we abstained from parametric statistics altogether and, 

instead, used a non-parametric TFCE approach. In addition, we applied high-dimensional 

warping ensuring that all brain images were precisely aligned and in spatial correspondence with 

each other. We also leveraged a relatively big sample (N=754), containing healthy controls as 
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well as participants with MCI and AD, altogether increasing the detectability of any effects. 

While significant group differences were evident in both smoothed and unsmoothed data, 

effects in unsmoothed data were less regionally specific with clusters bleeding over anatomical 

boundaries. It is beyond the scope of this methodically driven article to provide an in-depth 

interpretation of the findings, but it should be at least briefly pointed out that the most 

pronounced effects (i.e., significantly more gray matter in CTL than in AD) were detected in the 

hippocampal complex and amygdala, which is well in line with other reports in the literature (9-

11). 

Skipping the spatial smoothing step may seem radical, but evidence for the suitability of 

this approach is increasing (11), especially if brain images are precisely aligned (12, 13). In fact, 

there seems to be a shift in attitude towards smoothing in the field of human brain mapping, 

complementing traditional views that spatial smoothing is absolute necessary with more 

differentiated views (8, 11, 14-16). The current findings are in close resemblance with this shift 

in attitude. Omitting the smoothing step made it possible to dissociate neighboring brain areas 

with a single-voxel accuracy. Nevertheless, this gain in regional specificity was set off by a slight 

loss of sensitivity, which is illustrated by the more pronounced significance in the extended 

clusters in the smoothed data. The effect size in the unsmoothed data was still big enough to 

pass the threshold of significance, so this did not constitute a problem.  

In summary, based on the outcomes of the current analysis, we conclude that TFCE 

without smoothing leads to an improved regional specificity and that its trade-offs in sensitive 

warrant its application over standard parametric tests with smoothing. However, the decreased 

sensitivity might pose a problem in other analyses with thresholds at the border of significance. 

Therefore, analyses based on smoothed data will continue to provide important insights, 
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especially if parametric tests are required, if anticipated effect sizes are only small, and/or if 

image data cannot be precisely aligned. 

 

Materials and Methods 

 

Study Sample 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). More specifically, we used the T1-

weighted MRI data from ADNI 1, where baseline MRI data and test scores in selected cognitive 

scales (i.e., Mini-Mental State Examination [MMSE]) were available. Altogether, the sample 

contained 754 individuals, who were classified into four groups as (I) healthy controls (CTL) if 

they were cognitively healthy at baseline as well as at three-year follow-up (n = 218; 

males/females = 111/107, mean/SD age = 76.03/5.04 years, mean/SD MMSE = 29.13/1.01); (II) 

individuals with stable MCI (sMCI), if they were diagnosed with MCI at baseline as well as at 

three-year follow-up (n = 222, males/females = 145/77, mean/SD age = 75.51/7.32 years, 

mean/SD MMSE = 27.20/1.79), (III) individuals with progressive MCI (pMCI) if they were 

diagnosed with MCI at baseline and with AD at some point during the three-year follow-up 

without reversion to MCI (n = 130, males/females = 79/51, mean/SD age = 74.66/7.12 years, 

mean/SD MMSE = 26.68/1.75), and (IV) individuals with AD (AD), if they were diagnosed with AD 

at baseline as well as at three-year follow-up (n = 184, males/females = 95/99, mean/SD age = 

75.28/7.56 years, mean/SD MMSE = 23.25/2.04). 
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Data Processing 

All brain images were processed using the CAT12 toolbox (r1940; http://www.neuro.uni-

jena.de/cat), as implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 

The default CAT12 settings were applied for bias field correction (17) and tissue classification, 

which was based on adaptive maximum a posteriori estimations (18) and also accounted for 

partial volume effects (19). In contrast, for the spatial registration, we used a detailed geodesic 

shooting template with a spatial resolution of 1 mm, and also saved the spatially registered gray 

matter segments with a spatial resolution of 1 mm (the default is 1.5 mm). The resulting gray 

matter segments underwent visual and automated quality checks and were finally multiplied 

generating four identical sets of data: The first set remained unsmoothed; the other three sets 

were smoothed with a Gaussian kernel of 2, 4, and 6 mm FWHM. To mitigate any segmentation 

artifacts on the gray/white border, an absolute gray matter threshold of 0.1 was applied to the 

unsmoothed data; the same mask was also applied to the other three sets (to avoid any bias due 

to different masks).  

 

Statistical Analysis 

For each of the four datasets (0, 2, 4, and 6 mm FWHM, respectively), we ran an ANCOVA with 

four groups (CTL, sMCI, pMCI, and AD), while removing the variance associated with total 

intracranial volume. The latter was calculated by adding the volumes of the gray matter, white 

matter, and cerebrospinal fluid segments in native space. To test for increasing atrophy across 

the four groups (CTL>sMCI> pMCI>AD), the following contrast was applied: 1.5 0.5 -0.5 -1.5. The 

statistical analysis was conducted using the non-parametric TFCE-toolbox (which is freely 

available at http://www.neuro.uni-jena.de/tfce) running 25,000 permutations and applying a 

threshold of 0.0001 that was family-wise error (FWE) corrected.  
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