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Abstract

The transition to menopause is marked by a gradual decrease of estradiol. Concurrently, the risk of dementia in women increases
around menopause, suggesting that estradiol (or the lack thereof) plays a role in the development of dementia and other age-related
neuropathologies. Here, we set out to investigate whether there is a link between brain aging and estradiol-associated events, such as
menarche and menopause. For this purpose, we applied a well-validated machine learning approach to analyze both cross-sectional
and longitudinal data from a sample of 1,006 postmenopausal women who underwent structural magnetic resonance imaging twice,
approximately 2 years apart. We observed less brain aging in women with an earlier menarche, a later menopause, and a longer
reproductive span (i.e., the time interval between menarche and menopause). These effects were evident both cross-sectionally and
longitudinally, supporting the notion that estradiol has neuroprotective properties and contributes to brain preservation. However,
further research is required because the observed effects were small, estradiol was not directly measured, and other factors may
modulate female brain health. Future studies might benefit from incorporating actual estradiol (and other hormone) measures, as
well as considering genetic predispositions and lifestyle factors alongside indicators of brain aging to deepen our understanding of
estradiol’s role in maintaining brain health. Additionally, including more diverse study populations (e.g., varying in ethnicity, socioe-

conomic status, and health status) in follow-up research would enhance the generalizability and applicability of these findings.
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Background

Estradiol is the most potent and prevalent form of estrogen dur-
ing the reproductive life of a woman [1]. Generally speaking, estra-
diol levels start increasing just before the first menstrual period
(menarche) and then plateau on a high level until they start de-
creasing during perimenopause. After the final menstrual period
(i.e., menopause), estradiol levels decrease further and eventually
reach plateauing low levels during postmenopause [2]. The risk
for dementia in women is known to increase around menopause
[3-6], and thus it stands to reason that estradiol plays a role for the
development of dementia and other age-related neuropatholo-
gies. Indeed, studies using animal models have demonstrated
that estradiol promotes synaptic plasticity, enhances neurogene-
sis, and protects against oxidative stress and neuroinflammation
[7-13]—mechanisms that are critical for maintaining brain health
and mitigating age-related brain degeneration. While extensive
research has also been conducted in humans, focusing on specific
phases (e.g., menarche, pregnancy, menopause) or interventions
(e.g., hormonal contraceptives, menopausal estrogen therapy and
antiestrogen therapy), definitive evidence for the neuroprotective
role of estradiol remains elusive [4, 14-29]. Specifically, in the
context of menarche and menopause, both early and late onset
have been associated with an increased risk of dementia as well

as with markers of brain aging and cognitive function [4, 14-21,
24-26].

To further advance this field of research, the current study set
out to determine if there is a link between a woman's estimated
brain age (a biological marker of brain health [30]) and the repro-
ductive span (i.e., the interval between menarche and menopause
when estradiol levels are high). If a lack of estradiol is among the
driving factors for diminished brain health later in life, brain age
and reproductive span should be inversely related (negative cor-
relation). To be able to relate our findings to others in the litera-
ture [14-16] and to provide a frame of reference for future stud-
ies, we additionally investigated if there is a significant link be-
tween estimated brain age and the age at menarche as well as the
age at menopause. Assuming a neuroprotective effect of estradiol,
we expected that a lower brain age would be linked to an earlier
menarche (positive correlation) and to a later menopause (neg-
ative correlation). Importantly, our study comprises both cross-
sectional and longitudinal components, with follow-up data ac-
quired approximately 2 years after the initial brain scan.

To estimate brain age, we used structural brain images and a
well-validated high-dimensional pattern recognition approach, as
detailed elsewhere. Briefly, the difference between the estimated
brain age and the chronological age yields a so-called brain age
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Table 1: Sample characteristics

Variable Descriptive Statistics

Age at the initial brain scan
Age at the follow-up brain scan
Age at menarche

Age at menopause
Reproductive span

Number of live births

Mean + SD: 63.20 + 6.42 years
Mean + SD: 65.54 £ 6.37 years
Mean + SD: 13.02 + 1.53 years
Mean + SD: 51.41 + 3.23 years
Mean + SD: 38.39 &+ 3.55 years
Mean + SD: 1.75 £ 1.16
Number of women with hormone Yes: 306 (30.42%) | no: 700
replacement therapy (69.58%)

Number of women with hysterectomy Yes: 48 (4.77%) | no: 958 (95.23%)
Number of women with bilateral Yes: 37 (3.68%)| no: 969 (96.32%)
oophorectomy

SD: standard deviation.

gap estimate (BrainAGE) in years. The BrainAGE index is negative
if a brain is estimated younger than its chronological age; itis pos-
itive if a brain is estimated older than its chronological age. For
example, a 50-year-old woman with a BrainAGE index of —3 years
shows the aging pattern of a 47-year-old. The BrainAGE algorithm
has been shown to be robust and reliable across datasets, age
ranges, and scanner types [31, 33]; it has been successfully applied
in a wide range of studies [31, 32, 34-36], including those captur-
ing hormonal changes in women [37, 38]. Moreover, the BrainAGE
index has been demonstrated to work as a predictor of dementia
as well as age-related cognitive decline [34, 39]. A major advan-
tage of the BrainAGE approach is its ability to aggregate complex,
spatially distributed age-related changes in brain structure into a
single, interpretable biomarker. Such brain age metrics provide a
powerful way to study the influence of biological factors across
the female lifespan, including the effects of cumulative estrogen
exposure and genetic risk for age-related brain degeneration [14].

The study is based on a carefully selected sample of 1,006 post-
menopausal women from the UK Biobank [40], which was ac-
cessed under application number #41,655. The UK Biobank is a
biomedical database and research resource that contains genetic,
lifestyle, and health information from half a million people. In
the UK Biobank cohort, 94.6% of participants are of white eth-
nicity [41]. For general ethnic information, see [42]; for ethnic
information on all women with available longitudinal data, see
Supplemental Table S3. The UK Biobank holds the ethical ap-
proval from the North West Multi-Centre Research Ethics Com-
mittee and is in possession of the informed consents. Written in-
formed consent was obtained from all participants. Inclusion cri-
teria for the current study were women with available longitu-
dinal data as well as information on age at menarche and age
at menopause. Exclusion criteria for the current study were pre-
existing neurological or psychiatric diagnoses as per UK Biobank
data fields #41,202-0.0 to #41,202-0.78. In addition, to further in-
crease the homogeneity of the sample, we excluded women whose
age at menarche was younger than 10 or older than 18, or whose
age at menopause was younger than 45 or older than 60. This
resulted in a final sample size of 1,006 women. Table 1 provides
information on this final sample; Fig. 1 summarizes the steps re-
lated to the sample selection. For each woman, 1 initial brain scan
and 1 follow-up brain scan—approximately 2 years apart (mean +
SD: 2.35 £ 6.12 years)—were obtained after menopause. These T1-

UK Biobank Imaging Data

|

Healthy participants with longitudinal data
(baseline + follow-up)
n = 3,046

}

|
[
[ Women with longitudinal data |
:

(baseline + follow-up)
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}

Women with complete data
(age at menarche; age at menopause)
n=1,132

|

Women with suitable data
(menarche: 10 - 18 years; menopause: 45 - 60 years)
n=1,006

Figure 1: Flowchart of sample selection.

weighted brain images were acquired on a 3 Tesla Siemens Skyra
scanner using a 32-channel head coil, as described elsewhere [43,
44).

Using the aforementioned T1-weighted images, we applied a
number of processing routines implemented in the CAT12 tool-
box [45] (version 12.8), which resulted in bias-corrected, spatially
normalized, and tissue-classified brain images, as detailed else-
where [31, 38]. The normalized gray and white matter partitions
were smoothed using a 4- and 8-mm full-width-at-half-maximum
Gaussian kernel, and image resolution was set to 4 and 8 mm. For
further data reduction, we applied a principal component anal-
ysis (PCA) using singular value decomposition to all the models
using n — 1 PCA components (n = minimum of voxel number or
sample size). Prior to applying the PCA, the data were normal-
ized by scaling the values between 0 and 1 and subtracting the
mean. The transformation matrix derived from the training data
PCA was used to project the normalized test data onto this prin-
cipal component space.

For the estimation of the BrainAGE index, we employed a Gaus-
sian process regression [46] that uses a linear covariance func-
tion, a constant mean function, and a Gaussian likelihood func-
tion. Hyperparameters were set to 100 for the constant mean
function and to —1 for the likelihood function based on prior ex-
ploratory analyses [33]. As training data, we selected 3,046 indi-
viduals from the UK Biobank where 2 time points were available.
To avoid overfitting and ensure generalizability, we employed 10-
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fold cross-validation separately for the initial and follow-up brain
scan, where the dataset was randomly partitioned into 10 equally
sized subsets. In each iteration, 1-fold was used as the test set and
the remaining 9 as the training set. This process was repeated 10
times, and performance metrics (e.g., mean absolute error) were
averaged across folds. To estimate the individual brain ages, 8
models based on the aforementioned sets of images (i.e., gray mat-
ter/white matter, 4-mm/8-mm Gaussian kernel, and 4-mm/8-mm
image resolution) were combined using a general linear model
where the weights of the models were derived by maximizing the
variance to the parameter of interest (e.g., menopause). The differ-
ence between the resulting estimated brain age and the chrono-
logical age was then calculated as the BrainAGE index (in years).

Statistical analyses
Main analyses

After computing the BrainAGE index for all 1,006 women at ini-
tial and follow-up scan, we first removed the linear age trend
that is typically seen in BrainAGE estimation. Then, we conducted
2 analysis streams using linear regressions in MATLAB (version
R2023b; RRID:SCR_001622), one cross-sectional and one longitudi-
nal. For all analyses, alpha was set at 0.05 (2-tailed). For the cross-
sectional stream, we tested if there is a significant link between
the BrainAGE index at the initial brain scan and the reproductive
span. In addition, we tested if there is a significant link between
the BrainAGE index at the initial brain scan and the age at menar-
che as well as the age at menopause. For the longitudinal stream,
we first subtracted the BrainAGE index at the initial brain scan
from the BrainAGE index at the follow-up brain scan, which re-
sulted in a A BrainAGE index for each woman. This method, often
referred to as “change score” analysis, produces statistical results
comparable to those resulting from a repeated-measures analy-
sis of variance with 2 time points. Using the A BrainAGE index, we
then tested for significant links with the reproductive span, the
age at menarche, and the age at menopause.

Sensitivity analyses

The aforementioned main analyses were repeated while account-
ing for potential confounds known to affect brain health. More
specifically, we removed the variance associated with the num-
ber of live births [47] (UK Biobank data field #2734), hormone re-
placement therapy [14] (#2814), hysterectomy [48] (#3591), bilat-
eral oophorectomy [48] (#834), body mass index [49] (#21,001), di-
astolic and systolic blood pressure [50] (#4079 and #4080), diabetes
[51] (#2443), education [52] (#6138), income [53] (#738), and a com-
posite lifestyle factor [54]. The latter was expressed as a general
lifestyle score that was calculated based on a number of factors
(see Supplemental Table S1), known to increase/decrease the risk
of adverse cardiovascular events. Since not all women had infor-
mation on all potential confounds (see Supplemental Table S2),
we applied an imputation method using the MATLAB function
“fillmissing.” That is, missing entries were replaced with the corre-
sponding values from the nearest neighbor rows, calculated based
on the pairwise Euclidean distance between rows. Imputation was
applied to up to 295 women, depending on the potential confound.
For the cross-sectional stream, we tested if there is a significant
link between the BrainAGE index at the initial brain scan and
the reproductive span (age at menarche and age at menopause,
respectively). Likewise, for the longitudinal stream, we tested if
there is a significant link between the A BrainAGE index and
the reproductive span (age at menarche and age at menopause,
respectively).
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Results
Main analyses

As shown in Fig. 2 (left), our cross-sectional analyses revealed a
significant negative association between BrainAGE and the repro-
ductive span. In other words, brains of women with longer re-
productive spans were estimated younger than brains of women
with shorter reproductive spans. As also shown in Fig. 2 (right),
there was a significant positive association between BrainAGE and
age at menarche (i.e., the earlier the menarche, the younger the
brain) and a significant negative association between BrainAGE
and age at menopause (i.e., the later the menopause, the younger
the brain). As shown in Table 2 (main analyses), effect sizes were
small [55], with r-values of —0.11, 0.14, and —0.09 for reproduc-
tive span, menarche, and menopause, respectively. The slopes of
the regression indicate different rates of change for menarche
and menopause (0.32 and —0.10, respectively). More specifically,
for each year younger at menarche, brains are estimated 0.32
years younger (which corresponds to 3.2 years younger for each
10years). In contrast, for each year older at menopause, brains are
estimated 0.1 year younger (which corresponds to 1 year younger
for each 10 years).

As shown in Fig. 3 and Table 3 (main analyses), our longitudinal
findings confirm the observed cross-sectional relationships. More
specifically, A BrainAGE was negatively linked to reproductive
span and menopause, and positively linked to age at menarche. All
associations were significant. Again, effect sizes were small, with
r-values of —0.12, 0.06, and —0.12 for reproductive span, menar-
che, and menopause, respectively. The slopes of the regression
are still somewhat different for menarche and menopause (0.08
and —0.06, respectively), albeit more similar than in the cross-
sectional analysis: for each year younger at menarche, brains are
estimated 0.08 years younger (0.8 years over 10 years), whereas
for each year older at menopause, brains are estimated 0.06 years
younger (0.6 years over 10 years).

Sensitivity analyses

The results described above remained comparable when remov-
ing the variance associated with the number of live births, hor-
mone replacement therapy, hysterectomy, bilateral oophorec-
tomy, body mass index, diastolic and systolic blood pressure, di-
abetes, education, income, and a composite lifestyle factor. In
other words, when examining the association between BrainAGE
and reproductive span, we observed a negative association. Like-
wise, there was a positive association between BrainAGE and age
at menarche and a negative association between BrainAGE and
age at menopause. The effects were significant for reproductive
span, menarche, and menopause for the cross-sectional analyses
(see Table 2, Sensitivity analyses) and for reproductive span and
menopause for the longitudinal analyses (see Table 3, Sensitivity
analyses).

Discussion

Here we assessed links between estimated brain age and mile-
stones in a woman'’s reproductive life in a well-powered sample
of more than a thousand postmenopausal women. We detected
less brain aging in women with longer reproductive spans, earlier
menarche, and later menopause (see Figs. 2 and 3 and Tables 2
and 3).

Gz0z 1snBny /z uo Jasn euar yayloljqigsapue] pun ‘Alun Jebuueny] Aq 60z21 1 8/0901e1B/80usiosebiB/ce0 L 0L /10p/alo1le/aousioselib/woo dno olwapeoe)/:sdiy Wwolj papeojumMo(]


https://scicrunch.org/resolver/RRID:SCR_001622
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf060#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf060#supplementary-data

4 | GigaScience, 2025, Vol. 14

20 . ~ ' . 2

. Al B I
— o .
(%] o |
s 103 o HE B 1° ‘
g © s e g ? B -10 '
e E a °F $ond 35%3%“ T
5 @ ° o @: ® "é%“ﬁ 2 § g;‘,@;ugoi BRE P 20 ‘ ‘
o] Y P DR F o 280 10 15
(o5 0_ nﬂp @, 2 ."L#E‘;%%En 1
— rd o E:‘, 3 ﬁd o O
w & AR AR gg’g‘.ﬁ@n 2

c i 8 535% € ““gﬂgmu%@u“
= 3 vt i R g8l ol -
g g o QI‘._,ﬂn:l o0 emncnn 10

o i ﬂ_

@-10'§ 8 5 :
m (3]

= -10

@

N
=

45 50 55 60

30 35 40 45 Age at Menopause [years]

Reproductive Span [years]

Figure 2: Correlations with BrainAGE at the initial brain scan. The x-axes show the reproductive span (age, respectively) in years. Of note, age in the UK
Biobank has been rounded to the year, so we added a small random jitter to the x-axes to give a better overview about the age distribution. The y-axes
show the BrainAGE index in years, with negative values indicating that brains are estimated younger than their chronological age and positive values
indicating that brains are estimated older than their chronological age. Panel A displays a negative link between the BrainAGE index and the
reproductive span (the longer the reproductive span, the younger the estimated brain age). Panel B displays a positive link between the BrainAGE index
and the age at menarche (the earlier the onset of menarche, the younger the estimated brain age). Panel C displays a negative link between the
BrainAGE index and the age at menopause (the later the onset of menopause, the younger the estimated brain age). The squares in the density plot
represent the individual measures (n = 1,006); hot colors indicate a larger overlay of measures; cool colors indicate a smaller overlay. The shaded band
is the 95% confidence interval.

Table 2: Associations with BrainAGE at the initial brain scan

Main analyses Sensitivity analyses*
R? ¥ P Slope 95% CI R? r P Slope 95% CI
Reproductive span 0.01 -0.11 <0.001 -011 -0.17 to —0.05 0.01 -0.11 <0.001 -0.11 -0.17 to —-0.05
Age at menarche 0.02 0.14 <0.001 0.32 0.18 to 0.46 0.02 0.14 <0.001 0.33 0.19to0 0.47
Age at menopause 0.01 —0.09 <0.005 —-010 -0.17 to —-0.03 0.01 —0.09 <0.01 —-0.09 -0.16 to —0.03

*While removing the variance associated with the number of live births, hormone replacement therapy, hysterectomy, bilateral oophorectomy, body mass index,
diastolic and systolic blood pressure, diabetes, education, income, and a composite lifestyle factor.

Correspondence with previous findings less brain aging. However, menarche and menopause differ with
respect to the strength of their relationship with age (which is re-
flected in the correlation coefficient) and their rate of change with
age (which is reflected in the slope of the regression line). This
might indicate somewhat different underlying biological mecha-
nisms and/or confounds for menarche and menopause. For exam-
ple, during menopause, in addition to decreasing levels of estra-
diol, increasing levels of follicle-stimulating hormones may cause
an accelerated deposition of amyloid-g and Tau [64], which en-
hances brain atrophy. Moreover, menopause is marked by disad-
vantageous alterations in cytokine and T-cell profiles [65], which
are linked to an enhanced inflammation. Alternatively, the less
strong link pertaining to menarche could also reflect the fact that,
later in life, it is probably more challenging to accurately remem-
ber the onset of menarche than the onset of menopause.

Our findings are in line with the outcomes of other studies sug-
gesting a longer reproductive span, an earlier menarche [20, 21],
and a later menopause to be associated with a lower risk of de-
veloping dementia or better retained cognitive function. Further-
more, given that the BrainAGE index is based on the weighted dis-
tribution of gray and whiter matter tissue in the brain, our findings
are also in agreement with reports of lower brain volumes as well
as higher rates of brain tissue loss during menopause compared
to premenopause or in postmenopausal women compared to pre-
menopausal women [56-58]. In addition, our findings agree with
observed effects across the menstrual cycle linking high estradiol
levels at ovulation to lower BrainAGE estimates [37]. Altogether,
the outcomes of our study seem to suggest that estradiol con-
tributes to brain health, which is in agreement with other studies
reporting positive effects of estradiol on brain health and cogni-
tion within the framework of aging and/or menopausal hormone

Potential implications
therapy [59-63].

Given that estradiol levels start decreasing during perimenopause
and further decrease after menopause, our findings may ex-
Menarche versus menopause plain why the risk for dementia in women is known to in-
The outcomes of the main analyses indicate that both an earlier crease around menopause [3-6] and why there is an increased
menarche and a later menopause are significantly associated with age-independent prevalence of Alzheimer’s disease in women
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Figure 3: Correlations with BrainAGE over 2.35 years (A BrainAGE). Panel A displays a negative link between the BrainAGE index and reproductive span
(the longer the reproductive span, the younger the estimated brain age). Panel B displays a positive link between the BrainAGE index and the age at
menarche (the earlier the onset of menarche, the younger the estimated brain age). Panel C displays a negative link between the BrainAGE index and
the age at menopause (the later the onset of menopause, the younger the estimated brain age). The squares in the density plot represent the
individual measures (n = 1,006); hot colors indicate a larger overlay of measures; cool colors indicate a smaller overlay. The shaded band is the 95%

confidence interval.

Table 3: Associations with changes in BrainAGE over 2.35 years

Main analyses

Sensitivity analyses*

R? r P Slope 95% CI R? ¥ P Slope 95% CI
Reproductive span 0.01 -0.12 <0.001 —0.06 —0.10 to —0.03 0.01 -0.11 <0.001 —0.06 —0.09 to —0.03
Age at menarche <0.01 0.06 <0.05 0.08 0.0to 0.16 <0.01 0.06 n.s. 0.08 0.0to 0.16
Age at menopause 0.01 —-0.12 <0.001 —0.07 —-0.10 to —0.03 0.01 -0.12 <0.001 —-0.07 -0.11to —0.03

*While removing the variance associated with the number of live births, hormone replacement therapy, hysterectomy, bilateral oophorectomy, body mass index,
diastolic and systolic blood pressure, diabetes, education, income, and a composite lifestyle factor.

n.s.: not significant.

compared to men [63]. Moreover, our findings seem to support the
concept of the “window of opportunity,” spanning the years lead-
ing up to menopause to the years immediately after menopause,
where health interventions (e.g., menopausal hormone treat-
ment) may combat the increased risk for Alzheimer’s disease in
some women [5, 66-68]. In fact, several large-scale projects have
investigated the effects of menopausal hormone treatment on
cognitive function and Alzheimer’s risk, but results are inconclu-
sive (potentially relevant modulators of treatment outcomes are
discussed elsewhere [59, 69-74]).

The current findings seem to suggest a protective effect of
estradiol and, as such, seem promising in the framework of pre-
vention and intervention. However, further research is required,
as the effect sizes for the observed associations were small (al-
beit smaller effect sizes are not uncommon in studies with larger
sample sizes [75]), and various factors, such as genetics, lifestyle,
or hormones other than estradiol, could play a greater (or at least
an additional) role in preserving brain health [2, 76, 77]. Moreover,
our study did not measure estradiol directly, and links between
estradiol and brain aging seem to be rather complex, as indicated
by the outcomes of other studies. For example, it was reported
that, compared to no exposure or no dose, exposure to low con-
centrations of estradiol or low doses of estrogen enhanced neu-
ronal survival and increased anti-inflammatory markers (i.e., pos-

itive links), while exposure to high concentrations of estradiol as
well as high doses of estrogen had the opposite effect (i.e., nega-
tive links) [27, 28]. Another study reported U-shaped curves sug-
gesting that both early and late menarche are associated with an
increased risk for dementia (i.e., positive and negative links) [15],
and yet another study reported either negative links or missing
links between age at menarche and brain aging depending on the
potential confounds accounted for [14]. Interestingly, this latter
study also reported that, in carriers of the apolipoprotein E type
4 allele (APOE e4), higher levels of estradiol at menopause were
associated with increased brain aging (positive link). In contrast,
in noncarriers, higher levels of estradiol at menopause were asso-
ciated with decreased brain aging (negative link) [14].

Conclusion

Our study revealed less brain aging in women with a larger repro-
ductive span, earlier menarche, and later menopause. Thus, sex
hormones—potentially estradiol—may contribute to brain health.
However, follow-up research is required because the effects ob-
served in the current study were small, estradiol was not directly
examined, and female brain health is likely also modulated by
factors other than estradiol. Future studies might benefit from in-
corporating actual estradiol (and other hormone) measurements,
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as well as considering genetic predispositions and lifestyle fac-
tors alongside structural brain measures. Moreover, to build a
more comprehensive understanding and expand this understud-
ied field, future research focusing on specific time frames sur-
rounding menopause—such as perimenopause (i.e., the time pre-
ceding the final menstrual period) or early postmenopause (e.g.,
the initial year after menopause) versus late menopause (e.g.,
10 years after menopause)—would be valuable. Lastly, the UK
Biobank (i.e., the source of the current sample) is biased toward
healthy and more socioeconomically privileged individuals with
a predominantly white ethnic background [41]. Thus, conducting
research in more diverse populations, including individuals from
different ethnic, socioeconomic, and health backgrounds, would
improve the generalizability of findings and provide a broader
understanding of the relationship between estradiol and brain
health.

Availability of Source Code and
Requirements

Project name: BrainAGE-UKBiobank
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