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White matter variations in congenital adrenal 
hyperplasia: possible implications for 
glucocorticoid treatment

Eileen Luders,1,2,3,4 Debra Spencer,5 Christian Gaser,6,7 Ajay Thankamony,8,9

Ieuan A. Hughes,8 Umasuthan Srirangalingam,10 Helena Gleeson,11 Karson T. F. Kung,12

Ryan P. Cabeen,4 Melissa Hines5 and Florian Kurth3,13

Congenital adrenal hyperplasia has been reported to manifest with white matter aberrations. However, many previous studies in
cluded only small samples, restricted their analyses to females, lacked a control group and/or did not correct for brain size. Here, 
we examined the largest sample to date, comprising 53 male and female participants with congenital adrenal hyperplasia, who 
were matched with 53 male and female controls in terms of sex, age, education, and verbal intelligence. The four groups were com
pared with respect to their total white matter as well as white matter hyperintensities while applying brain size corrections. For both 
measures, total white matter and white matter hyperintensities, there were no significant sex differences or group-by-sex interactions. 
However, individuals with congenital adrenal hyperplasia had significantly smaller total white matter volumes compared to controls. 
Our findings align with previous reports of white matter variations in congenital adrenal hyperplasia. The absence of a group-by-sex 
interaction suggests that white matter variations in congenital adrenal hyperplasia may not be attributable to prenatal androgens. 
Instead, they may be a result of the condition itself and/or its treatment with glucocorticoids. The latter aspect warrants follow-up, 
particularly given that glucocorticoids are employed not only in congenital adrenal hyperplasia but also in other medical conditions.
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Graphical Abstract

Introduction
Congenital adrenal hyperplasia (CAH) refers to a group of 
genetic disorders which affect the adrenal glands. Among 
other things, CAH is accompanied by altered concentrations 
of cortisol and androgens,1 which are commonly treated 
with exogenous glucocorticoids. However, this treatment 
may result in overly elevated or abnormal levels of glucocor
ticoids which, in turn, may interfere with neuronal matur
ation (including myelination) and also exacerbate 
neurotoxic insults.2 Thus, glucocorticoid replacement ther
apy may have a negative impact on the brain by changing 
its underlying microstructure (e.g. demyelinated axons) 
and resulting macrostructure (e.g. smaller white matter vo
lumes). Indeed, as recently reviewed,1,3 individuals with 
CAH can present with white matter abnormalities, such as 
white matter hyperintensities, white matter lesions, or re
duced fractional anisotropy (an indicator of white matter 
microstructural integrity).

Nevertheless, the number of existing studies is limited 
and sample sizes are small, perhaps because CAH, and 
especially classic CAH, is rare with an incidence of ∼1 in 

10 000–20 000.4 Aside from several case studies (N = 1) re
viewed elsewhere,1 there are only eight studies examining 
white matter in CAH. These studies range with respect to 
the number of individuals with CAH from N = 7 (+3 con
trols),5 to N = 19 (+19 controls),6,7 to N = 22 (no controls),8

to N = 23 (+33 controls),9 to N = 26 (no controls),10 to 
N = 39 (no controls)2 and to N = 43 (+43 controls).11 Small 
sample sizes decrease statistical power, and while low statis
tical power diminishes the chance of detecting a true effect 
(e.g. the study with an N of 7 reported a lack of white matter 
abnormalities), it also reduces the likelihood that a statistical
ly significant result reflects a true effect.12 Moreover, not all 
studies have accounted for the typically larger brain size in 
males compared to females, and those that did sometimes 
found that the initially observed white matter effects were 
no longer significant.11 Furthermore, some studies did not in
clude a control group2,8,10 and some only included females 
with CAH but not males with CAH.6

Clearly, more research is necessary to understand pos
sible white matter abnormalities in CAH. Thus, here, we 
analysed the largest sample to date comprising 53 indivi
duals with CAH and 53 well-matched controls; we 
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included both women (33 CAH/33 controls) and men (20 
CAH/20 controls) and also applied appropriate corrections 
for brain size.

Materials and methods
Study sample
The present study is part of an NIH-funded project, entitled 
‘Brain and behavior in individuals with intersex conditions’ 
(R01HD081720). The study was based on 53 individuals 
with classic CAH4,13 who were matched pair-wise to 53 con
trols with respect to sex, age, education, and verbal intelli
gence. Sample characteristics are summarized in Table 1; 
for additional details, refer to prior publications.15,16

Approval for the study was obtained from an NHS 
Research Ethics Committee and the Health Research 
Authority in the UK (15/EM/0532) as well as the Ethics 
Committee at the University of Auckland in New Zealand 
(020825). All participants provided their informed consent.

Brain image acquisition
All participants were scanned between 2016 and 2022 on the 
same Siemens 3.0 Tesla Skyra system, as detailed elsewhere.15

The collected T1-weighted structural images underwent qual
ity control using visual inspections as well as objective criteria 
implemented in CAT12.17 Of the originally acquired 110 
brain images, two brain images from the CAH group did 
not pass and as such had to be removed. In order to retain 
the well-matched sample, the corresponding two brains of 
the control group were removed as well, which resulted in a 
final sample of 53 individuals with CAH and 53 controls.

Brain image analyses
All images were processed using CAT12,17 applying inhomo
geneity corrections and tissue classifications, as previously 
detailed.18,19 The total white matter volume was calculated 

in millilitres (mL) by adding up the partial volumes of the 
voxels classified as containing white matter. In order to de
rive the individual estimates for the white matter hyperinten
sities, we used the automated procedure implemented in 
CAT12, which included an optimized low-resolution shoot
ing registration technique20 as well as a fine-grained local 
correction based on region-growing and bottle-neck algo
rithms.21,22 The output is an individual brain map of white 
matter hyperintensities (see Supplemental Fig. 1), which are 
any isolated clusters of pathological features within the white 
matter as well as any voxels surrounding the lateral ventricles 
that present with an intensity typical for grey matter but have 
a high probability for white matter. The volume of the white 
matter hyperintensities was calculated (in mL) by adding up 
the volumes of the respective voxels.

Statistical analyses
Statistical analyses were performed in MATLAB (https:// 
www.mathworks.com/products/matlab.html) using general 
linear models. The total white matter volumes and white 
matter hyperintensity volumes were entered as the dependent 
variables; group (CAH/control), sex (female/male), and the 
group-by-sex interaction as the independent variables; and 
age and total intracranial volume (TIV)16 as variables of 
no interest. Significance was established using Monte Carlo 
simulations with 10 000 permutations to avoid relying on as
sumptions for parametric testing. Results were corrected for 
multiple comparisons resulting from the two dependent vari
ables by controlling the family-wise error (FWE) rate.23 TIV, 
as well as raw volumes and adjusted (corrected for age and 
TIV) volumes of total white matter and white matter hyper
intensities are provided in Table 2.

Results
For total white matter, there was no significant main effect of 
sex (women versus men) and no significant group-by-sex 

Table 1 Sample characteristics

Control women Control men Women with CAH Men with CAH

N 33 20 33 20
Age in years

Mean ± SD 31.8 ± 8.5 27.9 ± 5.5 31.1 ± 8.6 28.5 ± 6.6
Range 18.3–45.3 19.4–40.8 18.3–45.7 19.3–43.4

Verbal intelligencea

Mean ± SD 6.3 ± 2.3 6.4 ± 3.1 6.3 ± 2.6 5.6 ± 3.4
Range 1.8–11.0 −1.0 to 13.5 1.5–11.2 2.0–12.5

Educationb

Mean ± SD 4.1 ± 1.3 3.9 ± 1.2 4.0 ± 1.3 3.8 ± 1.4
• GCSEs n = 6 n = 3 n = 6 n = 4
• A Levels n = 6 n = 5 n = 5 n = 7
• Vocational training n = 5 n = 4 n = 6 n = 1
• Bachelor’s degree n = 12 n = 7 n = 14 n = 5
• Master’s degree n = 4 n = 1 n = 2 n = 3

SD, standard deviation; GCSE , General Certificate of Secondary Education. aMeasured using the advanced vocabulary test14. bHighest level of education obtained, coded as GCSEs = 2; 
A levels = 3; vocational training = 4; bachelor’s degree = 5; master’s degree = 6.
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interaction. In contrast, there was a significant main effect of 
group (CAH versus controls), with significantly smaller vo
lumes in individuals with CAH (women + men) compared 
to controls (women + men). The group-specific distribution 
of the total white matter volumes adjusted for TIV and age 
(as per the statistical model) are depicted in Fig. 1. For white 
matter hyperintensities, there was no significant main effect 
of sex, no significant main effect of group, and no significant 
group-by-sex interaction. The statistics for total white mat
ter as well as white matter hyperintensities are provided in 
Table 3.

Discussion
To our knowledge, this is the largest study to date (N = 106) 
examining white matter in a well-matched sample of men 
and women with and without CAH. With respect to the ob
served aberrations in total white matter, the present findings 
are in line with prior reports of white matter abnormalities in 
CAH in general.2,6,8,10,11,24-28 The current absence of signifi
cant group differences with respect to white matter hyperin
tensities seems to conflict with some prior reports.7,8,10,24-26

However, some of those studies only consisted of a single 

Table 2 Total intracranial, raw white matter, and adjusted white matter volumes (mean ± SD)

Control women Control men Women with CAH Men with CAH

Total intracranial volume in mL
TIV 1399.1 ± 99.1 1585.5 ± 118.7 1361.5 ± 117.8 1549.1 ± 154.0

Raw white matter volumes in mL
Total white matter 494.6 ± 42.7 561.8 ± 55.3 468.7 ± 50.8 536.9 ± 62.9
White matter hyperintensities 0.8 ± 0.5 0.8 ± 0.4 0.8 ± 1.2 0.8 ± 0.3

Adjusted white matter volumes (corrected for age and TIV) in mL
Total white matter 512.7 ± 27.2 512.5 ± 24.7 502.3 ± 26.3 500.9 ± 18.1
White matter hyperintensities 0.8 ± 0.5 0.7 ± 0.4 0.8 ± 1.2 0.7 ± 0.3

SD, standard deviation; TIV, total intracranial volume; mL, millilitres.

Figure 1 Group-specific total white matter volumes. The violin plots depict the distribution for each of the four groups. The black dots 
show individual volume estimates, the grey boxes show the group-specific interquartile ranges and the whiskers show the group-specific 1.5 
interquartile ranges. The difference in shading indicates the median. Total white matter volumes are adjusted for age and TIV. The asterisk 
indicates the significant group difference (P = 0.045), with larger total white matter volumes in controls (33 women/20 men) than in individuals 
with CAH (33 women/20 men).
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patient,24-26 lacked a control group8,10 and/or only reported 
hyperintensities in a small fraction of patients without actu
ally applying any statistical tests.7,8,10 Moreover, the major
ity of studies that revealed significant effects in regards to 
white matter hyperintensities did so using T2-weighted 
images, FLAIR images, or diffusion-weighted images, rather 
than T1-weighted images, as done in the current study. In 
fact, some of the studies that included both T1-weighted 
and otherwise weighted images reported an absence of sig
nificant effects specifically when using the T1-weighted 
images.24,28,29 Thus, future research may benefit from com
bining measures based on multiple magnetic resonance im
aging modalities (e.g. T1-weighted, T2-weighted, FLAIR, 
and diffusion tensor imaging), while including appropriate 
control groups and testing for statistical significance.

Classic CAH causes elevated androgen exposure of female 
foetuses, whereas androgen levels in male foetuses are largely 
unchanged. Therefore, if foetal androgens affected white 
matter, one would observe a significant difference when 
comparing females with and without CAH (i.e. groups 
with different foetal androgen levels), but not when compar
ing males with and without CAH (i.e. groups with similar 
foetal androgen levels). Consequently, there would be a 
group-by-sex interaction. The absence of such an inter
action, combined with the observed group effect (less total 
white matter in males and females with CAH compared to 
male and female controls) seems to suggest that white matter 
may be affected by aspects of the condition itself and/or by its 
treatment. More specifically, CAH is managed by adminis
tering exogenous glucocorticoids which mitigates cortisol 
deficiency and suppresses excess androgen production. 
This can result in an excessive glucocorticoid exposure, 
which may amplify neurotoxic insults and/or disrupt neur
onal myelination.2 A limitation of our study is the absence 
of information on doses of glucocorticoids prescribed over 
time. However, as previously reported in an independent 
CAH sample,6 patients who were exposed to higher gluco
corticoid doses had greater abnormalities in white matter 
microstructure (and also cognitive performance). Similar ab
errant white matter has also been observed in other condi
tions where the administration of glucocorticoids is the 
primary treatment, such as in Duchenne muscular dystrophy 
(reviewed elsewhere30).

In summary, our findings align with previous reports of 
white matter abnormalities in CAH. The smaller white 

matter volumes in both men and women with CAH may in
dicate adverse treatment effects of glucocorticoids. This pos
sibility carries substantial implications given the widespread 
use of glucocorticoids in the treatment of diverse medical 
conditions, including inflammatory, allergic and immuno
logical disorders,31 as well as their vital role in supporting 
preterm neonatal lung development and overall health.32

Consequently, further research—ideally containing informa
tion on treatment regimen (especially glucocorticoid doses) 
as well as measures of cortisol and androgens—is required 
to understand the underlying mechanisms of these current 
findings and their implications for the management of 
CAH and other medical conditions.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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