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Hemispheric brain asymmetries emerge in early life but continue to change over
time. However, there is no consensus on whether asymmetries become weaker
or stronger with age or which brain regions are most affected. Here, we set out
to further explore age-related changes in brain asymmetry, with a particular focus
on voxel-wise gray matter asymmetry. For this purpose, we selected a sample
of 2,322 participants (1,150 women/1,172 men), aged between 47 and 80 years
(mean 62.3 years), from the UK Biobank. Each participant was scanned twice; with
an interval between baseline and follow-up scans ranging between 1 and 7 years
(mean 2.4 years). Significant changes in asymmetry were observed, particularly in
the temporal and occipital lobe, as well as the cerebellum. Overall, decreases in
asymmetry were more prominent than increases, but with hemisphere-specific
effects (i.e., leftward asymmetries decreased more than increased, while rightward
asymmetries increased more than decreased). Changes in asymmetry were not
significantly associated with chronological age or biological sex, suggesting that
these changes neither accelerate nor decelerate with increasing age, and do not
differ between the sexes. Follow-up research — potentially incorporating additional
morphometric measures, different stages of life, and/or clinical populations — is
necessary, not only to replicate the current findings but also to investigate changes
over longer timeframes.
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1 Introduction

Structural and functional hemispheric differences are evident early in life and have been
shown to change across the lifespan (Kong et al., 2022; Ocklenburg and Gunturkun, 2018;
Ocklenburg and Gunturkun, 2024a; Ocklenburg et al., 2024; Toga et al., 2009). Although
various theories have been proposed to explain age-related changes in asymmetry, the precise
nature of these changes remains poorly understood. One perspective suggests a gradual
recruitment of homotopic contralateral regions with age, potentially leading to decreased
asymmetry (Cabeza, 2002). Alternatively, asymmetry may increase due to asymmetric atrophy,
with one hemisphere undergoing more rapid degeneration than the other (Thompson
etal., 2003).

The outcomes of existing studies are mixed; some report significant changes in asymmetry
with increasing age, while others find no such effect (Guadalupe et al., 2017; Kong and Francks,
2022; Kong et al., 2018; Minkova et al., 2017; Ocklenburg and Gunturkun, 2024a; Smeets et al.,
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2010; Thompson et al., 2003). When asymmetry change is reported,
there is little agreement on its nature, such as whether asymmetry
increases, decreases, or even reverses direction (from rightward to
leftward or from leftward to rightward, respectively). Moreover, it is
not clear whether asymmetry change is driven by gain in the right
hemisphere, loss in the left hemisphere (or vice versa), or a
combination of both. Furthermore, while there is general agreement
that asymmetry does not change uniformly across the brain, reports
differ with respect to the specific region undergoing change.

The present study was designed to characterize changes in voxel-
wise gray matter asymmetry using longitudinal data from more than
2,000 participants. Specifically, we investigated whether brain
asymmetry changes over time and whether any changes in brain
asymmetry are impacted by chronological age and by biological sex.
Altogether, this approach allowed us to disentangle complex patterns
of asymmetry change and assess whether age and sex moderate these
trajectories in a regionally specific manner.

2 Methods
2.1 Data and sample

All data were obtained from the UK Biobank (https://www.
ukbiobank.ac.uk; application #47813). The UK Biobank holds the
ethical approval from the North West Multi-Centre Research Ethics
Committee (MREC) and is in possession of the informed consents.
Additional approval was provided by the University of Auckland,
New Zealand (protocol #020825). The current study was based on
T1-weighted brain images, which were acquired at three different sites
on a 3T Siemens Skyra scanner using a 32-channel head coil, as
described elsewhere (http://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/bmri_V4_23092014.pdf; Alfaro-Almagro et al., 2018). Individual
datasets that did not include a follow-up brain scan or information on
age, sex, site, and/or handedness were removed. Moreover, all
participants with neuropsychiatric or neurological conditions, as well
as history of stroke or cancer were excluded. The final sample included
2,322 participants (1,150 women/1,172 men), ranging in age between
47 and 80 years (mean + SD: 62.25 + 7.35 years). Each participant was
scanned twice, with the interval between baseline and follow-up scans
ranging between 1 and 7 years (mean + SD: 2.39 + 0.82 years). Out of
that final sample 2,100 participants (90%) were right-handers,
reflecting the expected distribution of handedness in the population
(Annett, 1973).

2.2 Data processing

The analyses were conducted using voxel-based morphometry
(Ashburner and Friston, 2000; Kurth et al., 2015b) and running the
longitudinal workflow for age effects (Gaser et al, 2024), as
implemented in CAT12 (version 12.8; https://neuro-jena.github.io/
cat/) and SPM12 (version r7771; https://www.fiLion.uclac.uk/spm/).
The T1-weighted images were processed, as detailed elsewhere (Gaser
etal., 2024). Briefly, all images acquired at baseline and follow-up were
spatially aligned between these two time points using rigid body
transformations, corrected for magnetic field inhomogeneities,
classified as gray matter (GM), white matter (WM), and cerebrospinal
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fluid (CSF), and spatially normalized at a resolution of 1.5 x 1.5 x
1.5 mm’ using linear transformations and non-linear warping. The
normalized GM segments were then modulated by the Jacobian
determinant derived from the normalization matrix to preserve the
original voxel-wise GM (Ashburner and Friston, 2000; Kurth et al.,
2015b). The resulting modulated normalized GM segments were then
flipped along the x-axis, and both original and flipped tissue segments
were warped to a symmetric Shooting Template in MNI space and
modulated again (Kurth et al., 2015a). Altogether, this ensured a
voxel-wise comparability of local gray matter between hemispheres,
across participants, as well as between time points.

2.3 Calculation of the asymmetry index

For both baseline and follow-up segments, the asymmetry index
(AI) was calculated at each voxel as Al = (right — left) / [0.5 x (right +
left)]. This was followed by discarding duplicate information in the left
hemisphere. The voxel-wise Al values within the remaining right
hemisphere were smoothed using an 8 mm FWHM kernel (Kurth
et al,, 2015a). The smoothed voxel-wise Al values at baseline
(Alpaserne) served as dependent variable for statistical analysis I (see
Section 2.4). In addition, voxel-wise change maps were calculated by
subtracting the smoothed voxel-wise Al values at baseline from the
smoothed voxel-wise Al values at follow-up (Alroriow.up — Alpasering)-
These smoothed voxel-wise change values served as dependent
variable for statistical analysis II (see Section 2.4).

2.4 Statistical analysis

All statistical analyses were performed in Matlab and SPM12
(version r7771) using general linear models. Analysis I served to map
asymmetry at baseline, with the voxel-wise Alzyspne values as
dependent variable and the intercept as the variable of interest. Age,
age’, sex, total intracranial volume — TIV (determined as the sum of
GM, WM, and CSF), and scanner site were treated as variables of no
interest. Analysis II served to map changes in asymmetry over time
and additionally tested whether the rate or pattern of these changes
varied with age or between men and women. Dependent variables
here were the voxel-wise Alzoriow.up — Alpassune values, whereas
independent variables were the intercept, age, and sex. Variables of no
interest were TIV, scanner site, as well as the duration between the two
time points. All findings pertaining to analysis I and analysis IT were
corrected for multiple comparisons on cluster level by controlling the
family-wise error at p < 0.05 (Friston et al., 1996; Kurth et al., 2015a),
which was achieved by using a cluster-forming threshold at p < 0.001
and correcting for non-stationarity (Hayasaka et al., 2004).

2.5 Visualization

The significance clusters were superimposed on a template in the
symmetric MNI space (the same template used for symmetric spatial
normalization; see Section 2.4). To visualize significant asymmetry at
baseline (analysis I), significant rightward asymmetry (positive AI)
was projected onto the right hemisphere, whereas significant leftward
asymmetry (negative AI) was projected onto the left hemisphere (the
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Regions with significant gray matter asymmetry at baseline. Leftward asymmetries are shown on the left, rightward asymmetries are depicted on the

latter was achieved by flipping these clusters onto the left hemisphere).
To visualize the significant change in asymmetry over time (analysis
II), the cluster-specific mean AI was extracted at baseline (to
determine the initial asymmetry) and at follow-up (to determine a
possible switch in asymmetry over time), as described elsewhere
(Kurth et al., 2015a; Kurth et al., 2024). Significant changes of
rightward asymmetry (positive Al at baseline) were projected onto the
right hemisphere, and significant changes in leftward asymmetry
(negative Al at baseline) onto the left hemisphere (the latter, again, by
flipping clusters onto the left hemisphere).' In addition, for analysis II,
all significant clusters were transformed to the MNI152NLin2009cAsym
space to be able to report the cluster-specific MNI coordinates.

3 Results
3.1 Asymmetry at baseline (analysis I)

As shown in Figure 1, almost all regions of the brain show either a
significant rightward- or leftward asymmetry (i.e., hardly any region is

1 Clusters that changed in asymmetry from left to right (or from right to left)

are projected onto both hemispheres
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symmetric). More specifically, there were two clusters with a significant
rightward asymmetry covering large parts of the hemisphere: the first
cluster comprised 63,223 voxels (p < 0.001, FWE-corrected on cluster-
level) covering most of the hemisphere, while the second cluster
comprised 2,217 voxels (p = 0.004, FWE-corrected on cluster-level)
covering the middle cingulate gyrus. Similarly, two clusters showed a
significant leftward asymmetry, equally covering large parts of the
hemisphere: the first cluster comprised 34,094 voxels (p < 0.001,
FWE-corrected on cluster-level) covering most of the hemisphere, while
the second cluster comprised 671 voxels (p = 0.007, FWE-corrected on
cluster-level) covering the inferior part of the cerebellar vermis.

3.2 Longitudinal changes in asymmetry
over time (analysis )

As shown in Figure 2, a confined set of regions — predominantly
in the temporal and occipital lobe as well as the cerebellum -
showed significant changes in asymmetry over 1-7 years (mean
2.39 years). Some of these regions showed a decrease in asymmetry
(i.e., hemispheres become more similar over time), while others
exhibited an increase in asymmetry (i.e., hemispheres become more
different over time). Specifically, out of seven clusters with a leftward
asymmetry at baseline, four decreased in asymmetry, one increased
in asymmetry, and two switched from a leftward to a rightward
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FIGURE 2
Regions with a significant change in gray matter asymmetry over time. Leftward asymmetries are shown on the left, rightward asymmetries are
depicted on the right. Increases in asymmetry are depicted in cyan, decreases in asymmetry in pink. A switch in asymmetry (i.e., left-to-right or right-
to-left) is shown in both hemispheres

asymmetry. Similarly, out of eight clusters with a rightward
asymmetry at baseline, three decreased in asymmetry, four
increased in asymmetry, and one switched from a rightward to a
leftward asymmetry. Details for all clusters are given in Table 1.
Additional
Supplementary Figure S1. Neither age nor sex had a significant

cluster-specific  information is provided in

effect on changes in asymmetry.

4 Discussion

This study investigated whether and how gray matter
asymmetry changes over time in a large sample of more than
2,000 participants. We observed significant changes of both
leftward and rightward asymmetry, with increases, decreases, and
even reversals of asymmetry. Importantly, these findings
demonstrate that asymmetry changes are region-specific and
follow distinct trajectories, providing novel insights beyond prior
cross-sectional studies. Interestingly, asymmetry changes
remained broadly stable, showing no acceleration or deceleration

with increasing age, and did not differ between men and women.
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This generally linear pattern suggests that asymmetry changes
may reflect differential but proportional declines across the two
hemispheres rather than accelerated loss in one hemisphere
alone. Together, these results indicate that changes in asymmetry
are a typical feature of brain aging, following a largely stable
trajectory with minimal sex differences.

4.1 Changes in asymmetry with increasing
age

Reports on structural asymmetry within the framework of
aging exist, but the underlying studies were cross-sectional in
nature, correlating age and brain asymmetry with respect to
various morphological measures. For example, one study (n = 70)
examining gray matter in selected frontal and mesial temporal
regions reported an absence of significant correlations between
age and brain asymmetry (Smeets et al., 2010). Similarly, a study
(n = 485) examining gray matter in Brodman Areas (BA) 44 and
45 reported an absence of significant correlations for BA 44, but
a significant negative correlation between age and the rightward
asymmetry of Brodman Area 45 (Kurth et al., 2020). Another
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TABLE 1 Significant changes in asymmetry.

Nature of
change

Size
(voxels)

Cluster
number

Significance

(pFWE-corrected)

10.3389/fnins.2025.1671341

Brain region

Decrease in asymmetry

1 1,780 <0.001 Leftward decrease 48 -59 —54 Lateral cerebellar hemisphere

2 752 0.006 Leftward decrease 9 —98 4 Occipital pole

3 569 0.002 Leftward decrease 44 -29 10 Heschl gyrus
Planum temporale

4 328 0.039 Leftward decrease 35 42 34 Middle frontal gyrus

5 7,253 <0.001 Rightward decrease 25 -96 -5 Lateral occipital and parietal
cortex

6 1,381 0.002 Rightward decrease 10 —84 —45 Posterior cerebellar hemisphere

7 1,233 <0.001 Rightward decrease 45 -1 =35 Anterior inferior and superior
temporal sulcus

Increase in asymmetry

8 603 0.016 Leftward increase 10 —52 32 Posterior cingulate gyrus

9 1,984 <0.001 Rightward increase 51 -5 —46 Anterior inferior temporal gyrus

10 933 <0.001 Rightward increase 44 =31 1 Superior temporal sulcus

11 338 0.001 Rightward increase 39 28 42 Middle frontal gyrus

12 275 0.007 Rightward increase 13 52 42 Superior frontal gyrus

Switch in asymmetry

13 2,682 <0.001 Leftward to rightward 20 -37 —11 Hippocampus
Inferior occipital cortex
Superior cerebellar cortex

14 357 0.005 Leftward to rightward 29 16 6 Frontal pole

15 1,282 <0.001 Rightward to leftward 42 -23 24 Fronto-parietal operculum

study (n =215) examining cortical thickness reported a
significant positive correlation between age and the leftward
asymmetry of the temporo-occipito-parietal cortex as well as
between age and the rightward asymmetry of mesial parietal
regions (Plessen et al., 2014). Yet another study (n = 15,847)
examining subcortical brain volumes reported a significant
positive correlation between age and the leftward asymmetry of
the putamen (Guadalupe et al., 2017). When examining various
cortical measures, another study (n=17,141) reported a
significant negative correlation between age and the rightward
asymmetry of the superior temporal gyrus, with respect to
cortical thickness, as well as a positive correlation between age
and the leftward asymmetry of the superior temporal sulcus, with
respect to cortical surface area (Kong et al., 2018). Moreover,
when only including samples that spanned an age range of more
than 20 years, the same study reported a significant positive
correlation between age and the leftward asymmetry in overall
cortical thickness, as well as a significant negative correlation
between age and the leftward asymmetry in the surface area of
the entorhinal cortex (Kong et al., 2018). The comparability
between the outcomes of those studies and our current findings
is somewhat limited, given the different analysis designs (e.g.,
longitudinal versus cross-sectional) or morphometric measures
(e.g., voxel-wise gray matter versus regional surface area).

Frontiers in Neuroscience

Notwithstanding, the current findings - just as previous results —
support the notion that age-related changes in asymmetry do not
reflect a uniform shift towards a more (or less) asymmetric brain,
but rather differ in their directionality across brain regions. Such
region-specific patterns may reflect differential vulnerability of
homologous left and right hemisphere regions to intrinsic aging
processes and external influences.

4.2 No modulating impact of age and sex

Interestingly, there was no significant effect of age on asymmetry
changes over time, indicating that changes are relatively stable without
accelerating or decelerating with increasing age. While this might
seem to contrast with reports of accelerating gray matter loss with
increasing age (Coupe et al., 2017; Fjell et al., 2009; Fjell et al., 2013;
Pfefferbaum et al., 2013; Ziegler et al., 2012), it is not. Note, our study
examined changes in asymmetry of gray matter, not changes in gray
matter per se. In other words, brain regions with accelerated gray
matter loss, as reported in other studies, might not necessarily show
an accelerated change in asymmetry as well (e.g., if homologous
regions in both hemispheres decline at the same accelerated rate). In
fact, the absence of accelerated changes in asymmetry supports
previous reports suggesting that non-linear age effects are of little
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relevance (see Kong et al., 2022). This may also have functional
relevance, with better preserved cognitive function during typical
aging, compared to pathological aging. Indeed, there are reports of
rapidly increasing asymmetries in early dementia (Cherbuin et al.,
2010; Thompson et al., 2003), while the change in asymmetry remains
stable over time in our study of relatively healthy participants.
Similarly to age, there was no significant effect of sex on
asymmetry changes over time. In other words, male brains do not
significantly become more (or less) asymmetric over time than
female brains. This might seem surprising at first because
biological sex is a major modulator of both, brain asymmetry
(Guadalupe et al.,, 2017; Kong et al., 2018; Kurth et al., 2018;
Luders and Toga, 2010; Ocklenburg and Gunturkun, 2024b) and
brain aging (Austad, 2019; Dubal et al., 2025; Jahanshad and
Thompson, 2017). However, while females and males might
exhibit regional differences in asymmetry as well as regional
differences in aging trajectories, such sex differences do not
necessarily result in sex-specific changes in asymmetry over time.

4.3 Conclusion and outlook

The outcomes of our study support the notion of region-
specific changes in asymmetry over time, which seem to
be independent of age and sex. However, future studies are
needed to confirm the current results. Moreover, the current
study focused on voxel-wise gray matter volume, so expanding
the range of morphometric measures would be desirable (e.g.,
cortical thickness, cortical surface area, cortical, and subcortical
volumes), not only to provide a better comparability to previous
studies but also to reveal if asymmetry changes are different or
similar for different brain features. Optimally, such studies would
include more than one follow-up as well as longer observation
periods than only a few years. This would allow investigating
actual trajectories of change over time and also relating any
structural changes in asymmetry to corresponding functional
processes in the framework of aging, including measures of
cognitive reserve, brain health, as well as overall health (just to
name a few). In the present work, we deliberately restricted our
analyses to structural measures of asymmetry to establish a clear
and foundational characterization of its longitudinal trajectories.
While the UK Biobank indeed offers a wealth of phenotypic data,
including cognitive, lifestyle, and health-related measures,
incorporating these was beyond the scope of this initial
investigation. However, the integration of such variables might
be the next critical step that would possibly not only clarify the
functional significance of asymmetry changes but also link them
more directly to individual differences in cognition, lifestyle, and
health. Finally, future studies might consider contrasting
asymmetry changes in healthy populations with those in clinical
populations (e.g., individuals with age-related neuropathologies)
to address whether asymmetry changes are accelerated over time
in patients or whether disease severity, symptom progression, or
treatment response is associated with (accelerated) changes in
asymmetry. Last but not least, future studies may also want to
include measures of structural and functional connectivity as well
as cognitive measures building on (and potentially expanding)
existing models of aging that propose a change of structural
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asymmetry or functional lateralization due to an adaptive
reorganization to counteract effects of age-related atrophy. For
example, the HAROLD theory proposes that homologous areas
in the opposite hemisphere are progressively recruited with
increasing age (Cabeza, 2002; Dolcos et al., 2002), while further
refinements of that theory argue that recruitment of additional
brain regions only occur at higher cognitive load with recruitment
of a potentially larger network of regions not necessarily
restricted to homologous areas in the contralateral hemispheres
(Berlingeri et al., 2013; Park and Reuter-Lorenz, 2009; Reuter-
Lorenz and Park, 2008).
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