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Technical Note

1. INTRODUCTION

The brain is closely connected to other tissues and 
organs ( W.  Zhou  et al.,  2023), including the skeletal sys-
tem. A large body of literature suggests a bidirectional 
communication between bones and the brain ( Obri  et al., 
 2018;  Rousseaud  et al.,  2016). Moreover, bone- derived 
metabolites, such as osteocalcin, have been implicated 
in mood, cognition, and glucose/energy homeostasis in 

murine models ( Guntur  &  Rosen,  2012;  Khrimian  et al., 

 2017;  N.  K.  Lee  et al.,  2007;  Nakamura  et al.,  2021). How-

ever, the neuroimaging community largely dismisses the 

information from the closest bone structure surrounding 

the brain.

Bone tissue undergoes constant remodelling which is 

supported by osteoclasts (i.e., bone resorbing cells) and 

osteoblasts (i.e., new bone- forming cells) to regulate 
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mineral homeostasis and ensure skeletal integrity 
( Clarke,  2008;  Feng  &  McDonald,  2011). Bone metabo-
lism is affected by endocrine signalling and innervation 
via the sympathetic nervous system, with greater sym-
pathetic activity leading to decreasing BMD ( Ducy  & 
 Kousteni,  2015;  Takeda  et al.,  2002). Furthermore, bone 
tissue actively signals to the brain and other organs and 
is implicated in brain metabolism by secretion of bone- 
derived peptides (e.g., osteocalcin, osteopontin, scle-
rostin, lipocalin- 2, etc.), as well as by production of 
bone marrow- derived immune cells ( Chen  et al.,  2021; 
 Yu  et al.,  2020).

Bone health is compromised in various metabolic dis-
eases, and the relation between BMD and fat mass is 
complex ( N.  J.  Lee  et al.,  2020;  Rinonapoli  et al.,  2021). 
For example, people with anorexia nervosa tend to have 
lower BMD than healthy individuals or people with obesity 
( Fazeli  &  Klibanski,  2014;  Maïmoun  et al.,  2020). However, 
increased adiposity levels or other metabolic disorders 
can have a detrimental effect on bone health, as the mes-
enchymal stromal cells of the bone marrow preferentially 
convert into adipocytes (i.e., fat cells) rather than osteo-
blasts (i.e., new bone- forming cells) in obesity, potentially 
resulting in reduced bone mass (Fig.  1) ( Ambrosi  et  al., 
 2017;  Veldhuis- Vlug  &  Rosen,  2018). Bone health also 
seems to play a role in neurodegenerative as well as neu-
rodevelopmental disorders ( Kelly  et  al.,  2020), such as 
Parkinson’s disease ( Sleeman  et al.,  2016;  Tassorelli  et al., 
 2017), multiple sclerosis ( Bisson  et al.,  2019), and autism 
spectrum disorder ( Neumeyer  et al.,  2015). Moreover, a 
low BMD has been associated with an increased risk of 

Alzheimer’s Disease ( Kostev  et al.,  2018;  Lui  et al.,  2003; 
 Tan  et al.,  2005;  Xiao  et al.,  2023;  Zhang  et al.,  2022;  R. 
 Zhou  et al.,  2011). Therefore, bone- related measures may 
be of significant interest to the neuroimaging community.

Given the consistent reports on the connection of bone 
measures (e.g., BMD, bone mineral content) and brain  
ageing in the UK Biobank database (e.g.,  Miller  et al.,  2016; 
 Smith  et al.,  2019,  2020) as well as the long- known adverse 
effects of obesity on cognitive and brain health ( Beydoun 
 et  al.,  2008;  Farruggia  &  Small,  2019), the availability of 
such measures in open- source brain imaging databases, 
such as IXI, ADNI, AIBL, or OASIS, is inadequate. Many of 
the aforementioned databases include body composition 
proxies, such as BMI, but lack sophisticated body compo-
sition and bone- related measures, which typically require 
other means of acquisition (e.g., DXA- scanning, heel bone 
ultrasound, high- resolution peripheral quantitative com-
puted tomography). There has been a surge of interest in 
the crosstalk between bones and brain as well as adipos-
ity in recent years, and prospective studies are likely to 
incorporate the acquisition of relevant data in the future. 
However, in the meantime, studies may benefit from (retro-
spective) approximations of such measures using already 
existing neuroimaging data.

Thus, here we present an approach to extract relevant 
measures— bone mineral density (BMD), skull bone thick-
ness, and two approximations of subcutaneous fat, spe-
cifically the intensity and thickness of soft non- brain head 
tissue— from non- brain tissue classes that are normally 
discarded when processing T1- weighted images of the 
head. Standard processing tools for structural MR images 

Fig. 1. On the left are the UK Biobank (UKB) anthropometric measures used in the validation process (ASAT: abdominal 
subcutaneous adipose tissue, WHR: waist to hip ratio, VAT: visceral adipose tissue, BMI: body mass index, BMD: bone 
mineral density). Cranial anatomy and microenvironment of a bone are presented on the right. Bone marrow is located 
within the spongy/cancellous bone (diploë). Mesenchymal stromal cells in the bone marrow have the potential to develop 
into osteoblasts (bone- forming cells), chondrocytes (cartilage- forming cells), or adipocytes (bone marrow fat cells). 
Obesity, ageing, diabetes, anorexia nervosa, starvation, and osteoporosis lead their differentiation into adipocytes and, 
hence, a lower BMD ( Tencerova  &  Kassem,  2016).
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(e.g., SPM) contain algorithms that allow for identifying 
bone and soft tissue segments. The proposed approach 
builds on these established and well- tested algorithms 
but extends them by incorporating the extraction (and 
evaluation) of relevant skull and soft tissue measures.

2. METHODS

Section 1 describes the development of the algorithm to 
extract the novel measures from T1- weighted MRI images 
of the head, whereas Section 2 describes the evaluation 
of the reliability and validity of the novel measures. Both 
Section 1 and 2 used data from the UK Biobank (UKB 
application #41655) and from the OASIS- 3 Longitudinal 
Multimodal Neuroimaging Study (OASIS- 3), but to differ-
ent extents and for different purposes (as detailed below).

The UKB has ethical approval from the North West 
Multi- Centre Research Ethics Committee (MREC) and is 
in possession of the informed consents. The OASIS- 3 
has ethical approval from the Washington University 
Human Research Protection Office and is in possession 
of the informed consents. The public data sharing terms 
for OASIS- 3 were also approved by the Washington Uni-
versity Human Research Protection Office.

SECTION 1

2.1. Data sources

To develop the four novel head measures, we used T1- 
weighted brain MR images of a subsample of 1000 healthy 
UKB subjects (MAge = 64.02 ± 6.40 years, age range: 46– 80 
years, 50% women). In addition, we used 114 CT scans 
from the OASIS- 3 dataset (MAge = 66.71 ± 8.38 years, age 
range: 42– 85, 51% women) to create a skull- segment atlas.

2.2. Data acquisition

T1- weighted scans for the UKB were acquired on Siemens 
Skyra 3.0 T scanners, as detailed elsewhere (https://bio-
bank . ctsu . ox . ac . uk / crystal / crystal / docs / brain _ mri . pdf). In 
short, images were obtained with a 32- channel RF receive 
head coil using an MPRAGE sequence (1- mm isotropic res-
olution, inversion/repetition time = 880/2000 ms, acquisi-
tion time: 5 minutes, FOV: 208 x 256 x 256 matrix, in- plane 
acceleration factor = 2). The quality of the scans was moni-
tored internally through the UKB workflow ( Alfaro- Almagro 
 et al.,  2018).

CT scans for the OASIS- 3 dataset were obtained on 
the Siemens Biograph 40 PET/CT scanner. A 3- second 
X- ray topogram was acquired in the lateral plane, and a 
spiral CT scan was performed for attenuation correction 
at the low- dose CT ( LaMontagne  et al.,  2019).

2.3. Data preprocessing

The T1- weighted images were processed using SPM12 
(Wellcome Center for Human Neuroimaging, https://www 
. fil . ion . ucl . ac . uk / spm/) running under Matlab 2021a 
(Mathworks Inc., Natick, MA, USA), which produced the 
following segments: grey matter, white matter, cerebro-
spinal fluid, skull, soft head tissue, and background 
based on tissue probability map (TPM;  Ashburner  & 
 Friston,  2005). Of note, instead of the default setting 
(3  mm), we set SPM’s “samp” parameter to 5  mm to 
ensure that non- brain tissues were properly classified.

The CT images were preprocessed with CTseg utilising 
the unified segmentation of SPM12 ( Brudfors  et al.,  2020; 
https://github . com / WCHN / CTseg) and co- registered to 
the individual MRI space.

2.4. Extraction of the novel head measures

We extracted head features from T1- weighted MRI images 
in two ways: (1) separated by image class (hard vs. soft 
non- brain head tissues) and (2) by measure type (intensity 
vs. thickness). The hard head tissue (i.e., bone) is used to 
quantify BMD, whereas the soft head tissue serves to 
approximate the adiposity. The intensity- based measures 
are more sensitive but depend on the MR protocol. 
Thickness- based measures are less protocol- dependent 
as they rely more on the segmentation, but do not allow 
further specification of tissue composition (e.g., quantifi-
cation of adiposity within the tissue compartment). In both 
cases, estimating global/regional aspects is important to 
reduce local dependencies and errors.

2.4.1. Correction of SPM segmentation

The SPM processing often erroneously assigned the high 
intensity bone marrow in the cancellous bone to the head 
tissue class instead of the skull segment. Our algorithm 
automatically corrected misclassified skull segments by 
morphological operations (e.g., erosion, dilation, closing, 
opening, labelling) to avoid missing the intensities from 
the diploë (i.e., cancellous/spongy bone between the 
inner and outer layer of the cortical bone of the skull) and 
to correct the underestimated bone thickness (Fig. 2B).

2.4.2. Boney atlas

We created a template atlas of the skull regions by aver-
aging affine and intensity- normalised T1- weighted images 
as well as CT data of OASIS- 3, and manually labelling the 
skull segment tissue probability map using Slicer3D 
( Fedorov  et al.,  2012; https://slicer . readthedocs . io / en / 5 . 0 
/ index . html). The atlas was mapped into individual space 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/WCHN/CTseg
https://slicer.readthedocs.io/en/5.0/index.html
https://slicer.readthedocs.io/en/5.0/index.html


4

P. Kalc, F. Hoffstaedter, E. Luders et al. Imaging Neuroscience, Volume 2, 2024

using the linear transformation from the SPM segmenta-

tion. Additionally, we created a bone mask to avoid critical 

regions that are often affected by defacing or are in parts 

very thin, such as temporal and sphenoid bones (Fig. 2D). 

The identified bone regions were used in extracting 

regional bone and adiposity measures.

2.4.3. Bone measures

2.4.3.1. Intensity- based measures. Bone measures 

were derived from the corrected SPM skull segment, by 

quantifying the mean intensity across the entire segment 

labelled as skull (or within a specific skull region), and 
normalised by the SPM- derived WM intensity.

2.4.3.2. Thickness- based measures. Bone thickness 
was defined as the sum of the shortest distance from 
each skull voxel to the CSF and to the soft non- brain 
head tissue.

In addition to voxel- based processing, a midline sur-
face was generated to map bone values along the 
surface- normal. This allowed the cortical bone intensity, 
quantified as the local minimum, to be separated from 
the bone marrow intensity, defined as the distance- 
weighted average of the mapped points (Fig. 2C).

Fig. 2. (A) The figure shows the workflow of the algorithm with necessary corrections (B), extraction of measures (C), 
and template maps (D). MRI/CT images undergo preprocessing by SPM/SPM- CTseg into CSF, GM, WM, skull, head, 
and background. Morphological operations are used to correct segmentation errors (B), before estimating various 
distance maps to describe the skull and head tissue thickness maps (C). The calvarial atlas and mask, shown in (D), 
are mapped to the individual space to extract regional and global values. If surface processing is required, the distance 
maps are used to create a percentage position map, which allows the creation of the skull’s midline surface. This surface 
is then used to map the local thickness, intensity, and atlas region to the surface to extract a regional or masked global 
thickness and intensity value. (E) Represented are MRI slices and skull surfaces of three 63- year- old women from 
UKB with similar BMI but varying degrees of head BMD. Low BMD is associated with increased intensity of the skull 
segments in T1- weighted images.



5

P. Kalc, F. Hoffstaedter, E. Luders et al. Imaging Neuroscience, Volume 2, 2024

2.4.4. Soft head tissue measures

2.4.4.1. Intensity- based measures. To approximate the 
adipose tissue of the head, we estimated a weighted 
average of the SPM- derived Gaussian peaks by their pro-
portions in the tissue class labelled as head. Head tissue 
intensity was described as a percentage composite of 
the various soft non- brain head tissues.

To be more precise, SPM uses various Gaussian priors 
to model the composition of each tissue class. The Uni-
fied Segmentation ( Ashburner  &  Friston,  2005) utilises a 
tissue probability map with 6 classes (GM, WM, CSF, 
hard head tissue, soft head tissue, and background) and 
various number of Gaussian priors that represent the 
most relevant intensity peaks within the region outlined 
by the TPM (Fig.  2C histogram). Gaussian peaks are 
therefore highly dependent on the tissue composition, 
but do not necessarily represent particular tissues. 
Hence, our intensity- based measure is based on the 
average intensity and the size of the non- brain “soft head 
tissue” Gaussians, described by standard deviation and 
a percentage volume that we used for weighting. Sub-
jects with greater estimated adipose levels have therefore 
a higher relative volume of high- intensity voxels (in proto-
cols without fat suppression).

2.4.4.2. Thickness- based measures. Local head thick-
ness was calculated as the shortest distance from each 
soft head tissue voxel to the skull and to the background. 
The sum of both distances then yielded the estimate of 
the voxel- wise head tissue thickness. A separation into 
different head tissues (i.e., muscle, skin, and fat) was 
omitted because of varying amounts of (chemical shift) 
artefacts and inhomogeneities across the image. Of note, 
the lower portions of all brain scans as well as voxels 
located more than 30 mm from the skull were excluded 
from the head tissue thickness estimation to avoid side 
effects due to defacing and/or varying scanning proto-
cols and procedures.

2.5. Selection of the best proxy measures

Extracted global and regional measures were tested on 
1000 UKB subjects to obtain the best estimates of the 
BMD in an exploratory manner. A random forest regres-
sion with all the newly extracted bone measures as inde-
pendent variables predicting the gold- standard UKB 
head’s BMD measure and a permutation test were run in 
R (version 4.3.3;  R  Core  Team,  2024) with packages party 
( Hothorn  et al.,  2006) and flexplot ( D.  Fife,  2022). The final 
BMD approximation measure was chosen based on the 
estimated predictor importance values from a permuta-
tion test ( D.  A.  Fife  &  D’Onofrio,  2023).

The results of this step showed that the most relevant 
measure for the BMD approximation is the mean intensity 
extracted from the occipital bone (Table S1). The results 
were confirmed by the VBM analysis of the skull seg-
ments, where we could see the highest association of the 
head BMD and the occipital region of the skull (Fig. 4). We 
assumed the same pattern for the head tissue thickness 
and intensity estimates based on visual inspection of the 
images. All further analyses therefore included the occip-
ital measures to represent the skull BMD, skull bone 
thickness, intensity- based (IAP), and thickness- based 
adiposity proxies (TAP).

SECTION 2

2.6. Data sources

T1- weighted brain MR images of a subsample of 1000 
healthy UKB subjects that were not included in the previ-
ous exploratory analysis (MAge = 63.81 ± 6.27 years, age 
range: 46– 79 years, 50% women) were used to validate 
our skull BMD and adiposity proxy measures.

Furthermore, we used a sample of 316 T1- weighted 
MR scans from OASIS- 3 dataset, acquired at two time 
points within a time interval of less than 3  months 
(MAge  =  67.66  ±  8.22  years, age range: 42– 85, 56% 
women) to determine the retest reliability of the measures 
for the same as well as (slightly) different scanners and 
protocols.

2.7. Data acquisition

2.7.1. Brain MRI data acquisition

Please refer to the Section 1 above regarding the acqui-
sition of T1- weighted brain MR images in UKB.

The MRI data from the OASIS- 3 dataset used in this 
study were acquired on different 1.5 T and 3.0 T scanners 
with a 20- channel head coil (Siemens Sonata, Siemens TIM 
Trio and BioGraph mMR PET- MR 3T) ( LaMontagne  et al., 
 2019). The MPRAGE sequence was used with (i) 1 mm iso-
tropic repetition/echo time = 1900/3.93 ms, FA = 15° FOV 
phase = 87.50%; (ii) 1 mm isotropic inversion/repetition/
echo time = 1000/2400/3.16  ms, FA  =  8°, FOV phase = 
100%, and R = 2; and (iii) 1.20 x 1.05 x 1.05 mm resolution, 
inversion/repetition/echo time = 900/2300/2.95 ms, FA = 9°, 
FOV phase = 93.75 mm, and R = 2.

2.7.2. Bone mineral density data acquisition

BMD measures of the head, left femoral neck, and total 
body were obtained by dual energy X- ray absorptiometry 
(DXA) scanning with iDXA instrument (GE- Lunar, Madi-
son, WI). A detailed overview of the acquisition procedure 
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is available in UK Biobank documentation (https://bio-
bank . ndph . ox . ac . uk / showcase / ukb / docs / DXA _ explan 
_ doc . pdf).

2.7.3. Abdominal adipose tissue measures 
acquisition

UK Biobank’s subcutaneous and visceral adipose tissue 
volumes of the abdomen were acquired by abdominal 
MRI imaging on Siemens MAGNETOM Aera 1.5 T MRI 
scanner (Siemens Healthineers, Erlangen, Germany) with 
a 6‐minute dual‐echo Dixon Vibe protocol, resulting in a 
water and fat separated volumetric data set ( Linge  et al., 
 2018) that was processed by AMRA Profiler Research 
(AMRA Medical AB, Linköping, Sweden) to obtain body 
composition measures ( Borga  et al.,  2015).

2.8. Head MRI data preprocessing

The brain MRI data in this section were processed with 
the newly developed algorithm as described above 
(Fig. 2A). Briefly, SPM12- derived skull and soft head tis-
sue segments were corrected by morphological opera-
tions. The calvarial atlas and mask were mapped to the 
individual space to extract regional and global values for 
the voxel- based measure extraction. In the surface- 
based extraction, distance maps were used to create a 
percentage position map, forming the mid- skull- surface. 
This was used to map the local thickness, intensity, and 
atlas region to the surface and extract a regional or 
masked global thickness and intensity value.

2.9. Validation of the novel measures

2.9.1. Examination of validity (UK Biobank dataset)

The segmentation results were visually examined against 
ground- truth CT data, juxtaposing MR-  and CT- derived 
measures from the OASIS- 3 dataset (see Fig. S1).

The selected measures were validated by calculating 
the Spearman correlation coefficient (psych package; 
 Revelle,  2024) with head BMD (UKB #23226- 2.0) and 
total body BMD (UKB #23239- 2.0), as well as body fat 
percentage (UKB #23099- 2.0) and abdominal subcuta-
neous adipose tissue (ASAT; UKB #22408- 2.0) volume, 
for the estimates of skull BMD and head tissue thickness, 
respectively (see Fig. 1).

We additionally inspected the relation to other anthro-
pometric and lifestyle variables available in the UKB 
dataset that had previously been connected to BMD or 
adiposity ( Cusano,  2015;  Molenaar  et al.,  2009;  Shojaa 
 et al.,  2020;  Ward  &  Klesges,  2001;  Williams,  2005). We 
investigated the association with the BMD of the left 
femoral neck (UKB #23300- 2.0), standing height (UKB 

#50- 2.0), BMI (UKB #21001- 2.0), and visceral adipose 
tissue volume (VAT; UKB #22407- 2.0). We also used 
waist circumference (UKB #48- 2.0), hip circumference 
(UKB #49- 2.0), and height (UKB #50- 2.0) to derive and 
test the association with the waist- to- hip ratio (WHR) 
and waist- to- height ratio (WHtR), which may better 
reflect obesity- related cardiovascular risk independent 
of age, sex, or ethnicity ( Ashwell,  2005;  Swainson  et al., 
 2017). Furthermore, we included the variables connected 
to physical activity, namely duration of moderate (UKB 
#894- 2.0) and vigorous physical activity (UKB #914- 2.0), 
as well as pack years of smoking as proportion of life 
span exposed to smoking (UKB #20162- 2.0) and fre-
quency of alcohol intake (UKB #1558- 2.0).

As an additional validation step, we performed a 
volume- based morphometry (VBM) analysis in SPM12 
with BMD of the head and our newly extracted proxy 
BMD as predictors of the extracted warped and smoothed 
(FWHM = 8 mm) intensity- normalised skull segments on 
the sample of 2000 UKB subjects (M

Age = 64.17 ± 6.34 
years, age range: 46– 89  years, 50% women). Further-
more, a logistic regression analysis was conducted to 
examine the relationship between the occurrence of frac-
tures resulting from a simple fall (UKB #3005- 2.0, n frac-
tures = 116) and our proxy BMD measure. The model was 
fitted using the glm function in R (version 4.3.3;  R  Core 
 Team,  2024) with age and sex as covariates.

2.9.2. Evaluation of reliability (OASIS- 3 dataset)

We calculated the retest reliability of the estimated mea-
sures using T1- weighted images from the OASIS- 3 data-
set acquired at two time points within an interval of less 
than 3 months. One subject was excluded from the anal-
ysis due to a failed SPM- segmentation, resulting in a total 
sample of 157 subjects (age range: 42– 85, MAge = 
67.64 ±  8.24  years, 55% women). The reliability of the 
measures was estimated under the same scanner/proto-
col and mixed scanner/protocol conditions using an 
intraclass- correlation coefficient (2- way- mixed- effect 
model, absolute agreement) from the psych package 
( Revelle,  2024).

Furthermore, due to different resolution in some of the 
protocols, we harmonised the data to remove the batch 
effects employing ComBat ( Johnson  et al.,  2007) in sva 
package ( Leek  et al.,  2023).

3. RESULTS

3.1. Validation of the measures on the UK Biobank 
dataset

The processing results yielded clearly identifiable coro-
nal, sagittal, and lambdoid sutures, visibly separating the 

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/DXA_explan_doc.pdf
https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/DXA_explan_doc.pdf
https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/DXA_explan_doc.pdf
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calvarial bones in our extracted skull surfaces (Fig. 3A). 
The amount of high intensity voxels in the skull is nega-
tively associated with BMD (proxy) (Fig. 2E).

The validation results against other anthropometric 
and lifestyle measures are shown in Figure  3C (and 
Figs.  S2–S6). The extracted measures showed valid 
associations to other UKB parameters. The Spearman’s 
correlation coefficients between the extracted proxy 
BMD measure and UKB- derived head BMD were .70, 
.72, and .67 for a total sample, women, and men, respec-
tively (Fig.  3B; Fig. S3 for the bootstrapped correlation 
coefficient). The correlation with the total body BMD was 
moderate for the total sample and the subsample of men 
(rho =  .64 and .57, respectively) and higher for women 
(rho = .72). The association to other anthropometric mea-
sures showed a weak negative correlation with total fat 
percent (rho = – .14, p < .01), and a low positive correla-
tion with WHR (rho = .14, p < .01). A weak negative asso-
ciation between the proxy BMD measure and the 

exposure to smoking was observed in a subsample of 
men (rho = – .12, p < .01). Bone thickness (in the occipital 
part) was, on the other hand, weakly associated with 
body composition measures in men (ASAT: rho  =  .31, 
p < .0001; WHR: rho = .24, p < .0001, percent body fat: 
.30, p < .0001).

Our intensity- based adiposity approximation was 
moderately to highly positively correlated with other body 
composition measures. The Spearman’s correlation coef-
ficients with BMI were .52, .52, and .57 for a total sample, 
women, and men, respectively. The association is higher 
for the waist to height ratio (WHtR; rho = .59; rho = .62; 
rho = .64), volume of visceral adipose tissue (VAT), namely 
.57, .68, and .70, and abdominal subcutaneous adipose 
tissue volume (ASAT; rho = .62; rho = .64; rho = .65), for a 
total sample, women, and men, respectively. Similar pat-
terns were observed in our thickness- based adiposity 
approximation. The measure was moderately positively 
associated with other body composition measures. The 

Fig. 3. (A) The extracted skull surface of a subject from the UK Biobank with visible sutures and high intensity bone 
marrow. (B) Scatterplot of the UKB head BMD and our skull BMD estimate for men and women. Higher head BMD is 
related to lower (occipital) bone intensity in the MRI and therefore results in a higher proxy BMD value. (C) Spearman 
correlation coefficients with Holm correction for multiple comparisons between the estimated skull BMD proxy, bone 
thickness, as well as intensity-  and thickness- based adiposity proxies (i.e., SPM head class and head thickness, 
respectively), and other UKB and brain measures. The extracted measures are associated with the original BMD as well as 
body composition measures.
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Table 1. Results of a logistic regression model.

Estimate Odds ratio Lower CI 95% Upper CI 95% p- value

Intercept - 4.293 0.014 0.002 0.107 <.001***
Proxy BMD - 1.659 0.190 0.077 0.472 <.001***
Sex (male) - 0.929 0.395 0.253 0.616 <.001***
Age 0.005 1.004 0.973 1.037 .783

***The significance (as stated) is p < .001.

Spearman’s correlation coefficients with BMI and WHtR 
were moderate (BMI: .50, .54, .48, WHtR: .55, .57, and 
.44), whereas the association with VAT volume was higher, 
namely .65, .56, and .45 for a total sample, women, and 
men, respectively. The thickness- based adiposity proxy 
had a similar correlation with VAT as BMI in a total sample 
(rho = .65, p < .0001; rho = .64, p < .0001 for VAT associ-
ation with TAP and BMI, respectively), but lower in subsa-
mples of men and women (see Fig. S2).

It could be observed that the measures were biased 
due to anthropometric differences between the biological 
sexes. For subsequent use in statistical analyses, the 
sex, age, and TIV of the participants must be taken into 
account.

The logistic regression model showed a significant 
association between proxy BMD and fracture occurrence 
(OR =  .19, 95% CI [.08 .47], p <  .001). Higher levels of 
proxy BMD and being male (OR = .40, 95% CI [.25 .62], 
p  <  .001) were associated with lower odds of having 
experienced a fracture from a simple fall, while age did 
not seem to significantly affect the odds (Table 1).

3.2. The reliability of the measures in OASIS- 3 
dataset

The retest reliability based on the data obtained with the 
same protocol on two different time- points (n  =  63, 

MAge = 69.27 ± 7.32 years, 48– 85, 54% women) was high 
for the skull BMD (ICC = .95; p < .001) and bone thick-
ness estimation (ICC =  .83, p <  .001), comparatively to 
the regional GM volume (ICC  =  .97, p  <  .001). Our 
thickness- based adiposity proxy showed lower retest 
reliability (ICC = .53, p < .001). Nevertheless, the intensity- 
based adiposity proxy had a sufficient reliability of .66 
(p < .001). It should be noted that the retest reliability of 
the measures derived from images acquired with differ-
ent protocols is generally lower than for identical proto-
cols. The results from the whole selected sample (n = 157) 
as well as the results on the harmonised data are avail-
able in Table S2.

4. DISCUSSION

In the present study, we used tissue classes that are typ-
ically discarded when processing brain images to esti-
mate skull BMD, skull bone thickness, as well as 
intensity-  and thickness- based adiposity approxima-
tions. Such measures are normally not considered in 
neuroimaging research. However, burgeoning research 
shows the interconnectedness between brain, bones, 
and adipose tissue ( Caron  et al.,  2018;  Rousseaud  et al., 
 2016). Thus, the aim of this new line of research is to pro-
vide the neuroimaging community with proxy measures 
that can be extracted from standard T1- weighted brain 

Fig. 4. “Glass” head maps from the VBM analysis in SPM with (A) head BMD from the UKB as a predictor of the intensity- 
normalised skull segments, and (B) proxy BMD measure as a predictor of the intensity- normalised skull segments.
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scans that are available in open- source databases or that 
have been acquired by researchers following standard 
protocols of brain imaging.

4.1. Reliability and validity of measures

All extracted measures showed a good retest reliability on 
the OASIS- 3 dataset in both same-  and mixed- protocol 
test cases after harmonisation, with the only exception of 
thickness- based adiposity proxy. Its low retest reliability 
might be due to bias introduced during the head segment 
correction, and further development is currently under-
way to improve this specific measurement.

The validity of the proxy BMD measure was confirmed 
by moderate to high associations with DXA- derived BMD 
measures of the head and whole body, and by its 
 association with having experienced a fracture due to a 
simple fall. The proxy BMD measure also showed a link 
to age in women (but not men). This is expected as 
women experience significant changes in bone mass 
with ageing due to decreases in oestrogen and increases 
of follicle- stimulating hormone ( Almeida,  2012;  Iqbal 
 et al.,  2012). Men, on the other hand, are less susceptible 
to age- related hormonal fluctuations, and their bone 
mass tends to remain stable until later in life ( Porter  & 
 Varacallo,  2022). However, certain medications and poor 
lifestyle choices (e.g., physical inactivity or smoking) can 
also increase the risk of developing osteoporosis in men 
( Porter  &  Varacallo,  2022). In fact, our proxy BMD mea-
sure was partly linked to smoking exposure in men.

The validity of skull bone thickness was partially con-
firmed by association with certain aspects of body com-
position measures, particularly in men. Higher BMI and 
abdominal adiposity were weakly related to higher skull 
bone thickness in the occipital region. These results 
could be linked to the body weight- related mechanical 
stress to the bone ( Cherukuri  et  al.,  2021). It has been 
shown that men have, in general, a thicker occipital cra-
nial vault ( Anzelmo  et al.,  2015), related to abundant mus-
cle attachments in that region ( De  Boer  et  al.,  2016). 
Since it is typically the lean body mass that has a positive 
effect on bone health, rather than fat mass ( Ho- Pham 
 et al.,  2014;  Nguyen  et al.,  2020), our findings are to some 
extent contradictory. Nevertheless, the connection 
between skull bone thickness and adiposity might involve 
the effects of adipokines (i.e., signalling molecules pro-
duced by the adipocytes, such as leptin) on bone mass 
( Mangion  et  al.,  2023); however, further studies are 
needed to elucidate this finding.

The associations of thickness-  and intensity- based 
adiposity proxy measures with UKB anthropometric 
measures were moderate to high, with the lowest correla-
tion to BMI and the highest to WHtR and VAT. This lower 

connection to BMI is not surprising, as BMI is inherently 
a proxy measure of body composition ( Gutin,  2018). 
Among other drawbacks, BMI fails to account for changes 
in body composition when ageing, where lean muscle 
mass typically decreases while visceral adiposity 
increases, resulting in no change in weight ( Bhurosy  & 
 Jeewon,  2013). In an ageing sample like the UKB, such 
limited association to BMI is expected. Nevertheless, a 
stronger association between thickness- based adiposity 
proxy with VAT (in comparison to BMI) is crucial, as it 
shows the relevance of its extraction for the approxima-
tion of abdominal obesity. Moreover, both adiposity proxy 
measures were also negatively correlated with the rela-
tive GM volume and positively with CSF volume, which 
corroborates the previous findings on the negative influ-
ence of obesity on brain structure ( Gómez- Apo  et  al., 
 2021).

4.2. Potential application

Previous studies have shown that head fat tissue volume 
is linked to estimates of body composition in people with 
obesity ( Wang  et al.,  2014). Nevertheless, to our knowl-
edge, we conducted the first study that provides an esti-
mate of BMD from a T1- weighted scan of the head. The 
outcomes of our study suggest that skull BDM can serve 
as a proxy measure of a person’s total BMD. In addition, 
the information on skull bone thickness might become 
relevant in studies of traumatic brain injuries as the cra-
nium plays a vital role in protecting the brain ( Semple  & 
 Panagiotopoulou,  2023). Furthermore, the thickness- 
based adiposity proxy measures can be included as 
potential confounds in functional neuroimaging studies, 
such as electroencephalography, functional near infrared 
spectroscopy, and transcranial direct current stimulation 
( Gorniak  et  al.,  2022). Last but not least, the adiposity 
proxy measures may provide valuable information 
beyond the typically used BMI, which has several limita-
tions ( Burkhauser  &  Cawley,  2008;  Tomiyama  et al.,  2016), 
especially when used in cohorts of older individuals 
( Bhurosy  &  Jeewon,  2013;  Rothman,  2008). This might be 
particularly relevant as many open- source brain imaging 
databases (e.g., ADNI, AIBL, OASIS) include a high per-
centage of adults who are past midlife.

4.3. Limitations and future directions

The bone and adiposity estimations derived from T1- 
weighted MRI scans are not suitable for clinical use. 
Moreover, the application of the tool to real- world MR 
clinical data that lack body composition measures is lim-
ited. As demonstrated in Figure  S7, downsampled T1- 
weighted MRI images imitating clinical images can be 
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processed, albeit with lower accuracy. Results obtained 
from different MR protocols are not directly comparable as 
structural protocols can vary in (fat- suppression) intensity, 
which can affect the estimates in various ways. Character-
ising the nature of these variations and developing robust 
estimations for MRI protocols with fat suppression is war-
ranted in future studies. Additionally, our proxy BMD mea-
sure is highly correlated with head BMD, but only moderately 
with the BMD of femoral neck, which is a better predictor of 
fracture risk than head BMD ( Kanis  et al.,  2005). With their 
relation to high morbidity and mortality in older adults as 
well as their incidence in AD, fragility fractures present a 
relevant aspect of ageing ( Friedman  et al.,  2010;  Ruggiero 
 et al.,  2024). Thus, future studies utilising machine learning 
might focus on establishing a better predictor of (femoral 
neck) BMD and fracture risk. Moreover, deep learning might 
aid in segmenting specific tissue classes, such as muscles, 
skin, and fat, which could result in an even better (skinfold- 
like) approximation of an individual’s status related to over-
all health as well as obesity ( Langner  et al.,  2020;  Leong 
 et al.,  2024). Altogether, the present study serves as a pilot 
exploring the potential value of non- brain tissue analyses in 
the field of neuroimaging. Further studies, possibly extend-
ing to other imaging modalities, are necessary to improve 
and validate the measures.
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