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 A B S T R A C T

Anorexia nervosa (AN), a severe eating disorder marked by extreme weight loss and malnutrition, leads to 
significant alterations in brain structure. This study used machine learning (ML) to estimate brain age from 
structural MRI scans and investigated brain-predicted age difference (brain-PAD) as a potential biomarker 
in AN. Structural MRI scans were collected from female participants aged 10–40 years across two institutions 
(Boston, USA, and Jena, Germany), including acute AN (acAN; n=113), weight-restored AN (wrAN; n=35), and 
age-matched healthy controls (HC; n=90). The ML model was trained on 3487 healthy female participants (ages 
5–45 years) from ten datasets, using 377 neuroanatomical features extracted from T1-weighted MRI scans.

The model achieved strong performance with a mean absolute error (MAE) of 1.93 years and a correlation 
of r = 0.88 in HCs. In acAN patients, brain age was overestimated by an average of +2.25 years, suggesting 
advanced brain aging. In contrast, wrAN participants showed significantly lower brain-PAD than acAN (+0.26 
years, p=0.0026) and did not differ from HC (p=0.98), suggesting normalization of brain age estimates 
following weight restoration. A significant group-by-age interaction effect on predicted brain age (𝑝 < 0.001) 
indicated that brain age deviations were most pronounced in younger acAN participants. Brain-PAD in acAN 
was significantly negatively associated with BMI (r = −0.291, pfdr = 0.005), but not in wrAN or HC groups. 
Importantly, no significant associations were found between brain-PAD and clinical symptom severity.

These findings suggest that acute AN is linked to advanced brain aging during the acute stage, and that 
may partially normalize following weight recovery.
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1. Introduction

Anorexia nervosa (AN) is a severe psychiatric eating disorder char-
acterized by an intense fear of gaining weight and a distorted body 
image, leading to restricted food intake, malnutrition, and excessive 
weight loss [1]. Patients with AN commonly limit their caloric intake, 
often avoiding calorie-dense foods and demonstrating irregular eating 
behaviors such as prolonged mealtime duration and narrow food prefer-
ences [2–4]. Studies have shown that even before diagnosis, individuals 
at risk for AN tend to consume significantly fewer calories than their 
healthy peers [5]. This restrictive dietary pattern often includes a 
preference for vegetarianism, further limiting essential nutrients like 
protein and certain amino acids, which are vital for healthy body func-
tion [2,6–8]. These disordered eating behaviors not only contribute to 
severe malnutrition but also exacerbate the psychological and physical 
complications associated with the disorder.

Moreover, AN holds the grim distinction of having one of the 
highest mortality rates among psychiatric disorders [9], with more than 
5% of patients dying within four years of initial diagnosis [10–12]. 
Notably, about half of these deaths are due to suicide, while the rest are 
often due to medical complications arising from the disorder, such as 
sudden cardiac arrest [1,11,13,14]. Although AN is observed globally, 
its prevalence is notably higher in developed countries and primarily 
affects adolescents and young females [1].

Understanding the neurological underpinnings of patients with
acute AN (acAN) is essential, considering the disorder typically arises 
during a critical period of brain development [15,16] and can have 
long-lasting cognitive [17], emotional, and behavioral consequences
[18]. Malnutrition disrupts crucial brain maturation processes, such as 
myelinogenesis and dendritic pruning, which rely on dietary precursors 
such as polyunsaturated fatty acids [19–21].

Several studies have investigated the structural brain changes in 
individuals with acAN compared to healthy control (HC) [22–28], find-
ing significant reductions in the volume of white matter (WM) [29,30] 
and gray matter (GM) [25,27,28,30] in various brain regions. These 
reductions in WM and GM are most prominent in brain regions with 
crucial roles for motor, cognitive, and emotional functions, including 
the bilateral cerebellum, middle and posterior cingulate gyrus, supple-
mentary motor cortex, precentral gyrus medial segment, hippocampus, 
and thalamus [22,31,32]. Additionally, individuals with acAN exhibit 
alterations of a wide range of GM structural properties, such as surface 
area [19,27,33], curvature [24,34,35], thickness [23,26,27,36,37], and 
volumes [25,26,38]. Most of these changes have been demonstrated 
to depend on the BMI of patients [36,39,40]. These extensive changes 
suggest a strong link between undernutrition and the structural changes 
observed in acAN. However, studies also show that in partially or fully 
weight-restored patients with AN, some structural alterations normalize 
again, indicating that some degree of reversibility can occur with 
weight recovery [9,26,27,39–42].

Despite significant insights into structural brain alterations in acAN, 
one largely unexplored domain is how these changes relate to the 
natural brain aging and development process. Brain aging is character-
ized by progressive changes in brain structure and function, including 
reductions in GM volume and cortical thinning (CT) [43,44]. Research 
shows that the most rapid CT occurs before age 20, with peak changes 
observed between ages 10 and 17 [45,46]. This process reflects norma-
tive maturation, including synaptic pruning and increased myelination, 
contributing to more efficient brain function. However, AN frequently 
emerges during this critical window of neurodevelopment. During pu-
berty, key structural networks such as the frontostriatal motivation 
system and the social brain undergo significant remodeling [47,48]. We 
hypothesize that malnutrition during this sensitive period may disrupt 
or exaggerate normal developmental thinning, leading to deviations 
from age-typical brain trajectories. When brain age models trained 
on healthy development are applied, such deviations may appear as 
advanced brain age, especially if the observed structure resembles that 
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of older individuals. Thus, while cortical thinning is part of normal 
development, abnormal or premature thinning due to AN may result 
in a mismatch between chronological and predicted brain age.

Given these structural changes across development, machine learn-
ing (ML) has become an increasingly popular tool to quantify age-
related brain differences [49]. Across the lifespan, from adolescence 
to old age, these models have demonstrated a remarkable ability to 
estimate the age of healthy individuals with precision by learning from 
structural brain scans. Moreover, ML models have been effectively 
utilized in the study of psychiatric and neurodegenerative disorders, 
demonstrating promising results in identifying deviations from typical 
patterns of brain aging [50–58]. Considering the success of ML brain 
aging models in conditions such as schizophrenia and Alzheimer’s dis-
ease, this approach could also be beneficial in studying AN, potentially 
revealing either accelerations or delays in brain aging processes.

ML-based brain aging models have revealed that psychiatric and 
neurodegenerative conditions may exhibit signs of advanced brain 
aging [59–65], allowing for comparisons between an individual’s brain 
structure and normative references. For instance, brain age models have 
detected advanced brain aging in patients with Alzheimer’s disease 
by up to seven years [62,63]. Even individuals with progressive mild 
cognitive impairment, which may be a precursor to Alzheimer’s disease, 
show advanced brain age compared to those with stable mild cognitive 
impairment [60,64]. In mental disorders like schizophrenia and major 
depressive disorder, advanced brain aging has been associated with 
cognitive deficits, symptom severity, and treatment responses [59,61,
66]. These findings highlight the potential of brain aging models to 
offer valuable insights into the neurobiological mechanisms underlying 
various psychiatric conditions.

Exploring brain aging as a biomarker for the development and 
progression of AN could have a significant impact, particularly in rela-
tion to cognitive impairments and susceptibility to neurodegenerative 
diseases later in life. As outlined above, we hypothesize that this brain 
age discrepancy in AN may stem from disrupted or exaggerated cortical 
thinning during adolescence, a period of rapid neurodevelopment. 
This study applies machine learning–based brain age modeling to test 
whether such disruptions are reflected in advanced brain-PAD, and how 
they relate to clinical outcomes. The first study investigating brain age 
in AN provided initial evidence of accelerated aging [67]. However, 
their model was trained on a relatively small dataset (n = 226) with 
a limited age range of 5–23 years and relied on relevance vector 
regression (RVR), a method that may lack the flexibility to capture 
complex, nonlinear developmental trajectories. These methodological 
limitations underscore the need for larger, more representative samples 
and advanced modeling techniques. Given that AN profoundly affects 
nutritional status [68,69] and cognitive-emotional processes [17,70–
73], we hypothesize that these disturbances are linked to altered brain 
development and advanced brain age.

This study extracted 377 cortical and subcortical features from each 
structural MRI scan to estimate brain age. We leveraged support vector 
regression (SVR) and deep kernel learning (DKL)-based Gaussian pro-
cess regression (GPR), given their ability to capture complex, non-linear 
relationships in high-dimensional neuroimaging data. The predictive 
models were trained and validated exclusively on a normative dataset 
of 3487 healthy female participants aged 5–45 years. By learning how 
brain structure typically changes with age, the models established a 
normative aging trajectory. This allowed us to detect deviations in 
brain development in clinical groups by comparing predicted brain 
age to chronological age using brain-PAD. Model performance was 
evaluated using standard metrics such as mean absolute error (MAE), 
root mean squared error (RMSE), and Pearson correlation coefficients, 
all computed on held-out validation data to ensure generalizability. The 
final model was then applied to independent test datasets comprising 
acAN, wrAN, and HC participants to assess group-level deviations from 
normative brain aging.
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Fig. 1. Overview of the ML Pipeline for Brain Age Prediction in AN Patients, (a) Training and testing datasets: The training dataset consisted of 3487 HC samples from 10 datasets 
(aged 5–45). Testing data from the age group between 10 and 40 includes 42 acAN from Jena University Hospital (JUH), 71 acAN patients from Massachusetts General Hospital 
(MGH), 35 wrAN from MGH, and age-matched 42 and 48 HC samples from JUH and MGH. (b) Feature extraction using FreeSurfer: Structural MRI scans from HC and AN subjects 
were processed using FreeSurfer to extract 377 cortical and subcortical features. These features served as inputs to the ML models. (c) Model training and validation: The ML 
models, including SVR and DKL-GPR, were trained on 95% of the HC data with a 5-fold cross-validation approach to tune hyperparameters. The remaining 5% of HC data was 
used as a validation set. Model performance was evaluated based on MAE, MSE, RMSE, and correlation coefficient between predicted and chronological age. Model testing and 
brain-PAD calculation: The best-trained models were tested on the AN and HC testing datasets. Brain-PAD was computed as the difference between the predicted and chronological 
brain age. Positive brain-PAD values indicate advanced brain aging, while negative values suggest delayed aging. Brain-PAD was correlated with clinical scales, including BMI, 
TMT-A, TMT-B, STAI-T, STAI-S, BDI-II, TAS-26, EDI-2, and BIS, to assess the relationship between brain aging and clinical symptoms in AN patients.
In addition to brain age prediction, we also performed group com-
parison analysis across the same 377 features to examine structural 
differences between acAN, wrAN, and HC participants. This secondary 
analysis examined regional differences in cortical volume, thickness, 
surface area, mean curvature, and white matter volume across groups. 
Cohen’s d effect sizes were computed to quantify the magnitude of 
these differences and explore whether weight restoration influences 
structural recovery in AN.

By estimating the brain-predicted age difference (brain-PAD) rela-
tive to chronological age, we aimed to quantify deviations from typical 
brain aging in our test data, including AN patients and HCs. Given the 
consistent evidence of premature or excessive cortical thinning in AN 
patients, we hypothesized that this group would exhibit older brain 
age estimates and a positive brain-PAD. Additionally, we investigated 
the relationship between brain-PAD and various clinical profiles of AN 
patients to examine potential associations between altered brain aging 
and the clinical characteristics of AN.

2. Materials and methods

2.1. Participants

The datasets utilized in this study included both healthy controls 
(HC) and participants with anorexia nervosa (AN), focusing exclusively 
on preadolescent and young adult females aged 5–45 years (see Fig. 
1). To build a robust brain-age prediction model capable of capturing 
normative age-related neuroanatomical variation, we compiled a large 
dataset of 3487 healthy female participants–3108 sourced from nine 
publicly available databases and 379 obtained directly from Jena Uni-
versity Hospital (JUH). Detailed information about these data sources 
is provided in the supplementary material file 1.

Each publicly available database received ethical approval, and 
informed consent was obtained under local guidelines at each site. The 
clinical samples were acquired from JUH and MGH to test our model.

2.1.1. Demographics and data acquisition at JUH
For the JUH cohort, 42 individuals diagnosed with the restrictive 

subtype of acAN (ages 18–40 years; mean age 23.5 ±5.2 years) were 
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included. All patients met DSM-5 criteria for AN according to the Struc-
tured Clinical Interview for DSM-5 Axis I disorders [74]. Body mass 
index (BMI, kg/m2) was measured on the day of scanning, along with 
general psychopathology assessments using standardized tests. These 
included the Trail Making Test (TMTa and TMTb) [75], Behavioral 
Inhibition System (BIS) [76], Toronto Alexithymia Scale (TAS26) [77], 
Eating Disorder Inventory-2 (EDI-2) [78], State-Trait Anxiety Inventory 
(STAI-Trait, STAI-State) [79], and Beck Depression Inventory (BDI-
II) [80]. Additionally, BMI at admission and discharge was documented 
to evaluate weight changes during treatment. This comprehensive eval-
uation enabled a multidimensional analysis of the disorder’s impact on 
brain structure and function.

Data collection began between the third and seventh day after 
hospital admission to allow patients to acclimate to the hospital rou-
tine and minimize intervention interference. All acAN participants 
were right-handed, as evaluated by the modified version of Annett’s 
handedness inventory [81]. Similarly, we recruited age-matched HC 
participants (n = 42) who were right-handed and obtained the same 
assessments as the acAN patients (see Table  1).

Both acquired acAN and HC participants underwent thorough clin-
ical examinations and routine laboratory investigations. They were 
screened to exclude any history of neurological disorders or psychi-
atric conditions such as major depression, personality disorders, or 
obsessive-compulsive disorder. According to the SCID-I interview, none 
of the HCs (42 for testing and 379 for training data acquired at 
JUH) had a current episode or a history of mental disorder. For acAN 
patients, an expert clinician confirmed the absence of comorbid psychi-
atric diagnoses other than eating disorders.

All participants (and legal guardians for participants under 18) 
gave informed written consent. The study was approved by the local 
Ethics Committee of JUH and conducted according to the Declaration 
of Helsinki (2013). Table  1 provides detailed demographic and clinical 
information for the HC and AN patient groups.

MRI data were collected using a 3T whole-body system with a 12-
element head matrix coil (MAGNETOM Prisma, Siemens Healthcare, 
Erlangen, Germany). High-resolution anatomical T1-weighted images 
were acquired using the magnetization-prepared rapid gradient-echo 
(MPRAGE) sequence in the sagittal plane. Imaging parameters were: 
repetition time = 2300 ms; echo time = 3.03 ms; inversion time =
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Table 1
Demographic variables and clinical measures from two sites (JUH and MGH).
 General Jena University Hospital (JUH) Massachusetts General Hospital (MGH)
 HC acAN HC acAN wrAN  
 Nos. of patients 42 42 48 71 35  
 Age mean (SD) 23.8 ± 3.7 23.5 ± 5.2 18.8 ± 3.3 19.9 ± 3.9 22.7 ± 3.9  
 Age range 18.6 – 37.8 18.2 – 40.0 11.1 – 24.0 10.1 – 32.7 16.3 – 34.9 
 BMI (kg/m2) 23.3 ± 3.4 15.7 ± 1.7 21.5 ± 2.0 16.8 ± 1.34 20.9 ± 1.6  
Mean ± Standard deviation (SD) values for each variable. HC, healthy control subjects; acAN, acute anorexia nervosa patients; wrAN, weight 
recovered anorexia patients; BMI, body mass index.
rs; 
900 ms; flip angle = 9◦; matrix size = 256 × 256; voxel size = 1 ×
1 × 1 mm3; number of slices = 192. These parameters were optimized 
to ensure high-quality structural images suitable for subsequent brain 
morphometry analysis [82].

2.1.2. Demographics and data acquisition at MGH
This study recruited a total of 71 female participants (ages 10–32 yea

mean age 19.9 ±3.9 years) diagnosed with restrictive subtype acute 
anorexia nervosa, according to DSM-5 criteria, from the New England 
region. Recruitment was conducted through advertisements, flyers, 
healthcare providers, outpatient practices, and higher levels of care 
programs. The exclusion criteria encompassed the use of systemic hor-
mones, pregnancy, history of psychosis, active substance abuse, active 
suicidal ideation, history of gastrointestinal surgery, or other medical 
conditions that could result in low body weight, such as neoplasia or 
diabetes mellitus.

Additionally, the study included 35 weight-recovered female par-
ticipants with restrictive anorexia nervosa (ages 16–34 years; mean 
age 22.7 ±3.9 years) (see Table  1). These participants were between 
90%–110% of expected body weight for at least six months prior to the 
study. Weight-recovered AN met DSM-5 diagnostic criteria of restrictive 
AN in the past. For comparison, a group of healthy women with no 
lifetime history of any psychiatric diagnoses or eating disorders, with 
a normal BMI (percentile for age and sex between the 25th and 85th 
percentile), were scanned (see Table  1).

The studies received approval from the Massachusetts General Hos-
pital Institutional Review Board. Informed consent was obtained from 
adult participants, and for those under 18, parental/guardian consent 
and child assent were secured. On the day of MRI acquisition, height 
(measured in triplicate using a wall-mounted stadiometer) and weight 
(measured on an electronic scale) were recorded to calculate BMI.

A sagittal 3D T1-weighted MPRAGE sequence was obtained using 
a Siemens 3 T (3T) Trio scanner (Siemens, Erlangen, Germany), which 
featured a 12-channel head coil. The imaging parameters included a 
repetition time (TR) of 2530 ms, an echo time (TE) of 3.43 ms, a flip 
angle of 7◦, and a field of view (FOV) of 256 × 256 mm, with an 
effective slice thickness of 1.33 mm over 128 slices. To reduce head 
movement during the scan, foam cushions were used for support.

2.2. Neuroimaging processing and feature extraction

After collecting the HC and AN data, we processed each sam-
ple using FreeSurfer software version 7.3.2 [83], a widely used tool 
for analyzing structural MRI data to extract detailed morphological 
features from cortical and subcortical regions. We utilized the fully au-
tomated ‘‘recon-all -all’’ pipeline in FreeSurfer for initial preprocessing, 
which includes steps to ensure data quality and accuracy, such as mo-
tion correction, intensity normalization, transformation into Talairach 
space, skull stripping, volumetric labeling, segmentation, smoothing, 
and cortical and subcortical parcellation.

Following preprocessing, we conducted a quality assessment accord-
ing to FreeSurfer guidelines, checking for errors such as skull strip-
ping inaccuracies, segmentation errors, pial surface misalignments, and 
topological defects. For participants whose images required correction, 
we manually edited the data and repeated the necessary preprocess-
ing steps to ensure accuracy. After preprocessing all MRI images, we 
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obtained 377 distinct features using the Desikan-Killiany atlas as a 
reference. These included five morphological properties, cortical vol-
ume, surface area, mean curvature, cortical thickness, and white matter 
volume, measured across 68 cortical regions (68 × 5 = 340), as well 
as the volumes of 37 subcortical structures, resulting in a total of 377 
cortical and subcortical neuroanatomical features. All regions defined 
by the Desikan-Killiany atlas were included in the analysis, except 
for the brainstem, which was excluded due to frequent truncation in 
structural scans and to maintain consistent measurement reliability 
across datasets.

2.3. Brain age modeling and trajectory deviation analysis

We employed two ML algorithms to predict brain age from neu-
roimaging data: Support Vector Regression with a Radial Basis Function 
(RBF) kernel and Deep Kernel Learning Gaussian Process Regression. 
These algorithms were selected for their ability to model complex, non-
linear relationships in high-dimensional datasets typical of structural 
MRI scans. All 377 features were normalized by removing the mean 
and scaling to unit variance to ensure equal feature contribution and 
minimize bias from larger magnitudes.

Model Training and Hyperparameter Tuning: For each algo-
rithm, we constructed a feature matrix (n × g), where n = 3487 
represents the number of samples and g = 377 represents the number 
of neuroanatomical features. The dataset was split into a training set 
(95%) and a validation set (5%), and a 5-fold cross-validation strategy 
was used within the training data to evaluate model performance and 
prevent overfitting. In each iteration, the dataset was partitioned into 
five subsets, with four subsets used for training and one for testing, 
ensuring each subset served as the testing set once.

To reduce bias and ensure representativeness, all data splits were 
stratified based on age bins (in 5-year intervals spanning the 5–45 
year range) and dataset of origin. This stratified sampling was applied 
consistently during both the initial train–validation split and through-
out the 5-fold cross-validation process. This ensured that both age 
distribution and scanner/site variability were balanced across all par-
titions, minimizing dataset shift and improving generalizability across 
populations.

• Support Vector Regression (SVR): SVR was implemented using 
the scikit-learn library (version 1.3.2) [84], utilizing the RBF 
kernel to capture non-linear patterns in the data. Hyperparam-
eters, including the penalty parameter 𝐶, kernel coefficient 𝛾, 
and 𝜖, were optimized using ‘‘GridSearchCV’’ with 5-fold cross-
validation within the training data of each fold. The optimal 
hyperparameters were selected based on the lowest mean squared 
error on validation sets.

• Deep Kernel Learning Gaussian Process Regression (DKL-
GPR): DKL-GPR combines deep neural networks with Gaussian 
processes to model complex, non-linear relationships. We imple-
mented DKL-GPR using the GPyTorch library (version 1.11) [85]. 
The architecture included a fully connected neural network with 
four hidden layers serving as a feature extractor before Gaus-
sian process regression. The ExactGP function from GPyTorch 
was used to implement the GPR component. Hyperparameters, 
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including the network architecture parameters, length scale, and 
variance of the RBF kernel function, were manually tuned within 
the 5-fold cross-validation framework to balance model complex-
ity and prevent overfitting. The Adam optimizer with a 0.003 
learning rate was used during training. Additional implementa-
tion and mathematical details are provided in the supplementary 
material file 2.

• BrainAgeR: For comparison, we also evaluate BrainAgeR [53,
86–88], a widely used publicly available brain age prediction 
tool trained on 3377 healthy (mean age = 40.6 years, SD =
21.4, age range 18–92 years) structural MRI data using Gaussian 
process regression. We applied this model to our test samples and 
extracted predicted brain age values.

Model Testing and Validation: After training, the SVR, DKL-GPR, 
and pre-trained BrainAgeR models were evaluated on the 5% validation 
set using standard performance metrics: MAE, RMSE, and the Pearson 
correlation coefficient (r) between predicted and chronological age. 
These metrics were computed prior to any age-bias correction to objec-
tively assess raw model accuracy, in line with prior literature [89,90]. 
To statistically compare prediction performance across models, we 
applied a non-parametric bootstrap resampling approach (10,000 iter-
ations) to estimate confidence intervals and compute p-values for pair-
wise differences in MAE. This ensured a robust, distribution-free eval-
uation of model differences. These metrics were computed to compare 
the different model prediction accuracies.

Brain Age Prediction: Brain age prediction was performed by 
applying the trained and validated models to independent test datasets 
(acAN, wrAN, HC). This enabled the quantification of brain aging 
patterns and allowed us to explore deviations from normative aging 
trajectories in clinical populations.

• Age-Bias Correction: In addition to performance evaluation, we 
examined systematic deviations between predicted and chrono-
logical age, known as age-bias. To account for this, we applied 
a standard linear regression-based bias correction procedure [57,
89–91]. Specifically, we fit the following regression model in the 
validation set: 
𝑌 = 𝛼 ∗ 𝛺 + 𝛽 (1)

where, 𝑌  is the model-predicted brain age, 𝛺 is the chronological 
age, and 𝛼 and 𝛽 are the slope and intercept derived from the val-
idation set. These parameters were then used to correct predicted 
brain ages in all test datasets using the following formula: 

𝐵𝑖𝑎𝑠−𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒+ [𝛺− (𝛼 ∗ 𝛺+ 𝛽 )]

(2)

This ensured the corrected Brain-PAD values represented true de-
viations from the normative aging trajectory, independent of sys-
tematic model biases. Corrected brain ages were exclusively used 
for interpretive analyses, such as group comparisons and clini-
cal associations. Conversely, model performance metrics (MAE, 
RMSE, r) were reported using uncorrected predictions to avoid 
artificially inflating model accuracy.

• Brain-PAD Estimation: To quantify deviations between esti-
mated brain age and chronological age, we computed the brain-
predicted age difference (brain-PAD) as follows: 
𝐵𝑟𝑎𝑖𝑛 − 𝑃𝐴𝐷 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑟𝑎𝑖𝑛 𝐴𝑔𝑒 − 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐴𝑔𝑒 (3)

A positive brain-PAD indicates accelerated brain aging (older 
brain age relative to chronological age), while a negative brain-
PAD suggests a younger brain age compared to the chronolog-
ical age. Brain-PAD was computed for all participants in test-
ing datasets (acAN, wrAN, HC), and group differences were sta-
tistically evaluated using general linear models (GLMs), with 
chronological age included as a covariate.
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To assess the agreement between predicted brain age and chrono-
logical age across different models, we applied a Bland–Altman analy-
sis. This method plots the difference between predicted and chrono-
logical age against their mean and is commonly used to evaluate 
systematic bias and limits of agreement between two measurement 
methods. Bland–Altman plots were generated for all three prediction 
models.

2.4. Statistical analysis

To validate our hypothesis and comprehensively interpret our data, 
we conducted five distinct statistical analyses:

• Group Differences in Brain-PAD with Age as a Covariate: To 
evaluate group differences in brain-PAD across HC, acAN, and 
wrAN, we applied a general linear model (GLM) with group 
as a categorical predictor and chronological age as a covari-
ate (BrainPAD ∼ Group + Age). Post-hoc pairwise comparisons 
among groups were performed using estimated marginal means 
with Tukey correction for multiple testing. This analysis allowed 
us to determine whether brain-PAD varied significantly among 
the three groups while accounting for potential age-related differ-
ences. Additionally, to examine whether the predicted brain age 
follows different age trajectories across groups, we modeled an 
interaction between chronological age and group using predicted 
brain age as the dependent variable (Predicted Age ∼ Group * 
Age). This approach allowed us to formally test for group-specific 
differences in brain maturation patterns and detect whether dis-
crepancies in predicted age vary by age across clinical and control 
groups.

• Interaction Analysis Between BMI and Brain-PAD Across
Groups: To explore the relationship between BMI and brain-
PAD and how this relationship differs by group, corrected for 
chronological age, we conducted a GLM including BMI, group, 
and their interaction (BrainPAD ∼ BMI * Group + Age). Signif-
icant BMI × Group interaction effects were formally tested, and 
marginal trend (slope) analyses were performed to estimate and 
compare the strength and direction of the BMI–Brain-PAD associ-
ation within each group. Pairwise comparisons of slopes between 
groups were conducted to determine where significant differences 
occurred. Additionally, a secondary GLM model (BrainPAD ∼
Group + BMI) was fitted to ensure that group differences in brain-
PAD remained significant even after adjusting for BMI, isolating 
the effects of group status from BMI.

• Relationship Between Brain-PAD and Duration of Illness
(JUH site only): To assess the relationship between brain-PAD 
and the duration of illness within the acAN group (JUH dataset), 
a simple linear regression analysis was performed (BrainPAD ∼
IllnessDuration). This analysis assessed whether longer illness 
duration was associated with deviations in predicted brain age.

• Feature Contribution Analysis Using SHAP Values: To iden-
tify the most influential neuroanatomical features contributing to 
brain age predictions, we applied the SHapley Additive exPlana-
tion (SHAP) algorithm [92]. SHAP values quantify individual fea-
ture contributions to the model’s predictions, enabling us to inter-
pret the relative importance and directionality of these features. 
Specifically, we implemented a robust subsampling approach:

– For 1000 iterations, we randomly selected 80% of the sam-
ples from the healthy validation dataset.

– For each subset, SHAP values were computed using the 
KernelExplainer algorithm.

– Mean absolute SHAP values across all iterations were ag-
gregated, providing a stable and robust ranking of feature 
importance.
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Positive SHAP values indicate that higher feature values con-
tribute to an older predicted brain age (accelerated brain aging), 
while negative values indicate that features are associated with a 
younger predicted brain age (slower or delayed brain aging).
To assess group differences in age-related neuroanatomical trajec-
tories, we modeled normative brain development patterns using 
generalized additive models (GAMs) with cubic spline smoothers 
(feature ∼ s(Age, bs = ‘‘cs’’) + Group + Group:Age). Initially, 
normative trajectories were modeled exclusively on HC data to 
establish baseline age-related trends. Predicted values for all par-
ticipants were then computed from these models, and individual 
deviations from these predictions were calculated as residuals 
(observed minus predicted values). These residuals were stan-
dardized into z-scores using the standard deviation of residuals 
within the HC group. Group-level differences in these deviations 
and z-scores were evaluated using one-way ANOVAs, with mul-
tiple comparisons corrected using the false discovery rate (FDR) 
method.

• Group-Level Neuroanatomical Differences: To explore detailed 
neuroanatomical differences, we analyzed group-level differences 
in 377 cortical and subcortical neuroanatomical features between 
the groups (acAN vs. HC and acAN vs. wrAN) using GLMs, explic-
itly controlling for chronological age (Feature ∼ Group + Age). 
Cohen’s d effect sizes were computed for each neuroanatomical 
feature to quantify the magnitude of group differences. This 
comprehensive analysis enabled us to identify specific brain re-
gions exhibiting significant structural differences between clinical 
groups and healthy controls.

All statistical analyses were performed using R (version 3.6.3). 
To control for type I error due to multiple comparisons, we applied 
the Benjamini–Hochberg procedure for false discovery rate (FDR) cor-
rection [93], where applicable. Results were considered statistically 
significant at an adjusted threshold of 𝑝 < 0.05 after FDR correction. 
Similarly, all analyses involving brain-PAD were conducted using age-
bias corrected predicted ages to avoid residual age dependency and 
support valid between-group comparisons.

3. Results

3.1. Model performance

After evaluating the performance of multiple ML models, we se-
lected the DKL-GPR as the most suitable model for brain age prediction 
due to its superior performance on both validation and test datasets. 
The DKL-GPR model achieved a higher correlation coefficient (r = 0.87) 
and a lower MAE = 2.33 years compared to the SVR model, which 
achieved a correlation of r = 0.84 and an MAE of 2.50 years for the 
validation set. These results are summarized in (see supplementary 
material file 2) Figure S4a. Due to its improved performance, the DKL-
GPR model was chosen for further analysis and applied to independent 
test datasets to estimate brain age in acAN, wrAN, and HC groups.

In the age-matched HC test set, the model demonstrated high pre-
dictive accuracy, achieving a correlation of r = 0.88 and an MAE of 
1.93 years. To evaluate residual age-dependency after bias-correction, 
we examined the association between brain-PAD and chronological age 
in the HC test set. This analysis revealed a non-significant positive 
correlation (r = 0.178, p = 0.093), indicating minimal residual age bias 
(see supplementary material file 2, Figure S3a). To further assess the 
agreement between predicted and chronological age, a Bland–Altman 
analysis was conducted. This analysis revealed minimal systematic bias 
(+0.066 years) and narrow limits of agreement (within ±1.96 standard 
deviation limits (−5.79 to +5.92 years)), suggesting that the DKL-GPR 
model produces both accurate and consistent brain age estimates in 
healthy individuals (supplementary Figure S4b).
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Furthermore, to ensure the robustness of the model across acquisi-
tion sites, we also examined the DKL-GPR model’s performance sepa-
rately on HC participants from the JUH and MGH datasets. Although 
minor differences in MAE were observed (JUH: 2.05 years; MGH: 
1.82 years), no substantial variation in accuracy was found, supporting 
the model’s robustness across acquisition settings (see supplementary 
material file 2, Figure S3b).

For further benchmarking, we applied the BrainAgeR model to the 
same validation sample. This model yielded a lower correlation (r
= 0.74) and higher MAE (3.24 years), indicating reduced prediction 
accuracy relative to DKL-GPR. A Bland–Altman analysis of BrainAgeR 
showed greater bias and wider limits of agreement (+1.84 years, rang-
ing from −6.99 to +10.67 years), consistent with its performance 
metrics. These discrepancies likely reflect differences in model architec-
ture, training sample characteristics, and age range, compared to our 
model, which was trained on a younger sample spanning 5–45 years.

For completeness, we also examined the SVR model’s agreement 
profile. Although SVR showed nearly negligible bias (−0.0039 years), 
its limits of agreement (−6.35 to +6.35 years) were wider than those of 
DKL-GPR. This suggests that while SVR produces unbiased predictions 
on average, it is less precise than DKL-GPR.

To statistically compare prediction errors between models, we con-
ducted pairwise bootstrapped comparisons of MAEs across 10,000 re-
samples. The results revealed that DKL-GPR significantly outperformed 
BrainAgeR (mean MAE difference = −0.91 years, 95% CI: [−1.52, 
−0.32], p = 0.0024) and SVR also showed lower MAE than BrainAgeR 
(−0.75 years, 95% CI: [−1.36, –0.15], p = 0.0154). However, no 
significant difference was found between DKL-GPR and SVR (p = 0.13), 
supporting that while both non-linear models are strong candidates, 
DKL-GPR offers marginally better consistency and agreement.

3.2. Brain-PAD is increased in acute AN patients

To formally assess group differences in brain aging, we performed 
a GLM analysis with group (acAN, wrAN, HC) as the independent 
variable and chronological age as a covariate. This analysis revealed 
a significant group effect on brain-PAD. Post-hoc pairwise comparisons 
indicated that brain-PAD was significantly elevated in the acAN group 
compared to both HC (𝛽 = 2.40, 𝑝 < 0.001) and wrAN (𝛽 = 2.61, p
= 0.0024). In contrast, no significant difference was observed between 
wrAN and HC (p = 0.96). These findings confirm that elevated brain-
PAD is specifically associated with the acute phase of AN and suggest 
that brain aging tends to normalize following weight restoration (Fig. 
2a).

Group-level comparisons of median brain-PAD further support these 
statistical findings. The HC group (n = 90) displayed a near-zero 
median brain-PAD (−0.24 years), consistent with the model’s accurate 
estimation of brain age in healthy individuals. Conversely, the acAN 
group (n = 113) showed a significantly elevated median brain-PAD 
of +2.25 years (𝑝 < 0.001), reinforcing the presence of advanced 
brain aging during the acute stage of AN. The wrAN group (n = 35) 
demonstrated a median brain-PAD of +0.26 years, significantly lower 
than acAN (p = 0.00261), but not significantly different from HC (p =
0.98).

In addition to brain-PAD group differences, we tested whether the 
relationship between predicted brain (bias-corrected) age and chrono-
logical age varied by group using a separate GLM with an interaction 
term (Group × Age). This analysis revealed a significant group-by-
age interaction between acAN and HC (𝛽 = 0.45, 𝑝 < 0.001) and 
between acAN and wrAN (𝛽 = −0.57, p = 0.0018). As shown in Fig. 
2b, this indicates that the discrepancy in predicted brain age increases 
with chronological age, particularly among younger acAN participants, 
suggesting more pronounced deviations from normative brain aging 
trajectories in this subgroup.

Importantly, this elevated brain-PAD in acAN patients was consis-
tently replicated across datasets from both institutes (JUH and MGH), 
underscoring the robustness and reliability of these results across inde-
pendent samples (see supplementary material file 2, Figure S3b, S3c, 
and S3d).
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Fig. 2. Brain-PAD and Predicted vs. Chronological Age in acAN, wrAN, and Age-matched HC Testing Subjects. (a) Boxplot of brain-PAD values for HC, acAN, and wrAN groups. 
HC shows a near-zero brain-PAD (median = −0.24 years), acAN patients exhibit significantly higher brain-PAD (median = +2.25 years, 𝑝 < 0.001), and wrAN patients show a 
reduced brain-PAD (median = +0.26 years). Significant differences are observed between acAN and wrAN (p = 0.00261) but not between wrAN and HC (p = 0.98). (b) Scatter 
plot illustrating the relationship between biased-corrected predicted brain age and chronological age for HC and acAN participants. A significant group-by-age interaction effect is 
observed (𝛽 = 0.45, 𝑝 < 0.001). Red and gray regression lines represent the fitted trajectories for acAN and HC groups, respectively, with shaded areas indicating 95% confidence 
intervals. ns = not significant, ** = p-value is less than 0.01, and *** = p-value is less than 0.001.

Fig. 3. Correlation Analysis Between Brain-PAD with BMI in HC, acAN, and wrAN, and Duration of Illness in acAN in years. (a) Correlation between brain-PAD and BMI in HC 
samples (n = 90), (b) Scatter plot showing a significant negative correlation between brain-PAD and BMI in acAN patients (n = 90), with r = −0.291 and p = 0.0053, indicating 
that lower BMI was associated with higher brain-PAD values. (c) Correlation between brain-PAD and BMI in wrAN patients (n = 35), showing no significant correlation (r = 0.178,
p = 0.3058). (d) A significant negative correlation was found between brain-PAD and the duration of illness in acAN patients, with r = −0.423, p = 0.0078.

Computers in Biology and Medicine 194 (2025) 110484 

7 



Y. Gupta et al. Computers in Biology and Medicine 194 (2025) 110484 
Table 2
Clinical measures of acAN and age-matched HC testing set from JUH and their group differences.
 Clinical scales HC acAN Comparison between HC and acAN
 M ± SD r pfdr M ± SD r pfdr t df p  
 TMTa 26 ± 7.8 0.03 0.87 23.6 ± 8.4 −0.16 0.61 1.39 80.23 0.17  
 TMTb 49.7 ± 16 −0.09 0.75 51.3 ± 16.1 −0.16 0.61 −0.44 80.9 0.65  
 BIS 56.5 ± 7.9 −0.3 0.75 58.6 ± 11.7 0.25 0.52 −0.91 68.21 0.36  
 TAS26 40.9 ± 9.3 0.11 0.75 52.1 ± 10.1 −0.11 0.71 −4.69 63.85 <.001  
 EDI-2 209.4 ± 40.7 0.06 0.75 310 ± 45.5 −0.21 0.57 −10.16 70.90 <.001  
 BDI-II 5.7 ± 5.8 −0.09 0.75 25.5 ± 11.1 −0.17 0.69 −9.67 61.43 <.001  
 STAI-S 33.8 ± 5.8 −0.09 0.75 46.7 ± 9.8 0.04 0.83 −7.37 67.09 <.001  
 STAI-T 43.4 ± 6.2 0.21 0.75 48.8 ± 8.1 −0.04 0.83 −3.40 72.78 0.001  
 BMI admission (kg/m2) . . . 15.2 ± 1.6 −0.27 0.52 . . .  
 BMI discharge (kg/m2) . . . 16.1 ± 1.5 −0.06 0.83 . . .  
 Age of onset (years) . . . 16.9 ± 3.6 0.14 0.61 . . .  
Mean ± Standard deviation (SD) values for each variable. HC, healthy control subjects; acAN, acute anorexia nervosa patients; EDI-2, Eating Disorder Inventory-2; BDI-II, Beck 
Depression Inventory-II; TMTa, Trail Making Task - A; TMTb, Trail Making Task - B; BIS, Behavioral Inhibition System; STAI-S, State Anxiety Inventory; STAI-T, Trait Anxiety 
Inventory. The mean duration of illness was 6.15 ± 5.75 (SD) years. BMI admission and BMI discharge are the body mass index assessed at admission and discharge from the 
hospital.
3.3. Correlation analysis between brain-PAD and clinical scales

We examined the relationship between brain-PAD and clinical vari-
ables across acutely ill AN (acAN), wrAN, and HC participants using 
correlation analyses and GLMs. Our primary goal was to assess how 
BMI, illness duration, and clinical symptomatology relate to deviations 
in predicted brain age.

As shown in Fig.  3, BMI was significantly associated with brain-
PAD, though the nature of this relationship varied by group. In the 
acAN group (n = 113), a significant negative correlation was observed 
(r = −0.291, pfdr = 0.0053), indicating that lower BMI was associated 
with more advanced brain aging (Fig.  3b). A similar but opposite trend 
was found in the HC group (n = 90), where a positive correlation was 
observed (r = 0.297, pfdr = 0.007), suggesting that lower BMI was 
linked to a younger brain age in healthy individuals (Fig.  3a). In the 
wrAN group (n = 35), no significant correlation was detected (r =
0.178, p = 0.3058), suggesting partial normalization of brain structure 
with weight recovery (Fig.  3c).

To formally test whether the association between BMI and brain-
PAD differed across groups, we applied a general linear model includ-
ing BMI, group, chronological age, and their interaction term (Group 
× BMI). The analysis revealed a significant interaction between BMI 
and group (𝑝 < 0.001), indicating that the relationship between BMI 
and brain-PAD significantly varied by group.

To interpret these differences, we compared the BMI slopes within 
each group. The BMI–Brain-PAD slope was significantly negative in 
the acAN group (𝛽 = −0.823, SE = 0.226, 𝑝 < 0.001), indicating 
that lower BMI was associated with greater brain age acceleration. In 
contrast, a positive slope was observed in the HC group (𝛽 = +0.491, 
SE = 0.155, 𝑝 < 0.01), suggesting the opposite relationship. The slope 
in the wrAN group was also positive (𝛽 = +0.397, SE = 0.407), but 
not statistically significant (p = 0.35). Pairwise comparisons confirmed 
that the BMI–Brain-PAD slopes differed significantly between acAN and 
HC (𝑝 < 0.001) and between acAN and wrAN (p = 0.025), while no 
difference was observed between HC and wrAN (p = 0.97).

To ensure that group differences in brain-PAD were not merely 
driven by BMI, we conducted an additional GLM with group and BMI 
as predictors of brain-PAD. In this model, group differences remained 
statistically significant even after adjusting for BMI. Brain-PAD was 
significantly higher in acAN compared to HC (𝛽 = 2.43, p = 0.0310) 
and compared to wrAN (𝛽 = 2.91, p = 0.0085), while no significant 
difference was observed between HC and wrAN (p = 0.8369). Im-
portantly, BMI itself was not a significant predictor of brain-PAD (𝛽
= 0.0054, p = 0.966), suggesting that the observed differences are 
primarily attributable to group status rather than BMI alone. These 
results further reinforce that advanced brain aging is specifically linked 
to the acute phase of AN and is not fully explained by differences in 
body weight.
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Additionally, we also examined the relationship between brain-
PAD and illness duration (defined as chronological age minus age of 
onset) in the acAN subgroup from the JUH site (Fig.  3d), where onset 
age data were available. A significant negative correlation was found 
(r = −0.423, p = 0.0078), suggesting that individuals with longer 
illness durations exhibited lower brain-PAD, potentially reflecting a 
normalization over time or the effects of treatment exposure.

Finally, we assessed whether brain-PAD was associated with clinical 
or cognitive symptomatology by correlating brain-PAD with a range of 
psychological measures. Across the JUH dataset (Table  2), no signifi-
cant correlations between brain-PAD and any clinical scales survived 
after FDR correction.

3.4. Brain regions associated with aging

The most significant brain regions for predicting brain age in the 
HC validation samples were determined through SHAP analysis, which 
ranked features by their impact on model predictions. The top three 
features contributing to brain age predictions were the left hippocampal 
volume, left superior frontal cortex thickness, and right hippocampal 
volume, with SHAP importance scores of 0.256, 0.252, and 0.251, 
respectively (Fig.  4a). In contrast, regions such as the right fusiform 
volume, left cuneus area, and right caudal middle frontal cortex had 
minimal influence on model predictions.

The SHAP value distributions (Fig.  4b) further illustrate how the 
structural values of these regions influence brain age predictions. For 
instance, larger hippocampal volumes are associated with older brain 
predictions (positive SHAP values), while smaller volumes are linked 
to younger brain predictions (negative SHAP values). These relation-
ships are consistent with known structural changes across the lifespan, 
supporting the biological relevance of the brain age model.

To examine whether the aging trajectories of these key features 
differ between clinical and control groups, we modeled age-feature re-
lationships using GAMs. As shown in Fig.  4c, the hippocampal volumes 
and superior frontal thickness followed distinct trajectories in acAN (n
= 113) compared to HC (n = 3577, including 90 JUH/MGH HC data), 
suggesting altered neurodevelopmental patterns in AN. To formally 
quantify deviation from the normative trajectory, we computed each 
participant’s residual and z-scored deviation from the HC trajectory. 
Group comparisons revealed that only the left superior frontal cortex 
thickness showed a significant deviation in the acAN group relative to 
HC after FDR correction (F (1, 3690) = 46.83, pfdr = 2.71e−11). The left 
and right hippocampal volumes did not show significant group-level 
deviations (both pfdr = 0.923). These findings suggest that while the 
hippocampus is a strong contributor to model predictions, the superior 
frontal cortex may be more sensitive to group-level alterations in brain 
aging trajectories.
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Fig. 4. Brain Regions Associated with Aging in AN Patients. (a) The top three and last three brain regions contribute to brain age prediction based on SHAP values from the 
DKL-GPR model. The left hippocampus volume, left superior frontal cortex thickness, and right hippocampus volume exhibit the highest mean importance, indicating their key 
roles in brain age prediction for participants with AN. (b) SHAP value distributions for these regions show the direction and magnitude of their impact on brain age predictions. 
Positive SHAP values are associated with higher predicted brain age (suggesting structural abnormalities), while negative values indicate a younger predicted brain age. (c) Scatter 
plots of the top three SHAP-selected brain regions (left/right hippocampus and left superior frontal cortex) plotted against chronological age. Smoothing splines (mean ±95% CI) 
reveal different aging trajectories for acAN patients (red) versus HC (gray), highlighting potential neuroanatomical changes contributing to accelerated aging in AN.
3.5. Magnitude of individual brain structural features affected in AN pa-
tients

Finally, we explored group-level comparisons of all input neu-
roanatomical features between cohorts to assess structural differences 
(see Fig.  5 and the supplementary material file 3, Group comparison 
sheet).

Acute AN participants showed significantly lower cortical and sub-
cortical structural measures compared to HC (see Fig.  5a and sup-
plementary material file 2 Figures S1 and S2). Notably, significant 
reductions were observed in the right inferior parietal volume (d =
−0.70, 𝑝fdr < 0.001) and thickness (d = −0.65, 𝑝fdr < 0.001), and 
left precentral volume (d = −0.65, 𝑝fdr < 0.001). Conversely, some 
brain regions showed increases in volume for acAN patients, most 
pronounced in the third ventricle (d = 0.53, pfdr = 0.004) and fourth 
ventricle (d = 0.35, pfdr = 0.068).

From the most important features revealed by the SHAP-analysis, 
only the left superior frontal thickness significantly differed between 
acAN and controls, with patients exhibiting a marked reduction in 
cortical thickness in this region (d = −0.41, pfdr = 0.031). Marginal vol-
umetric reductions were observed in the right (d = −0.12, n.s.) and left 
hippocampus (d = −0.09, n.s.), which were not statistically significant. 
In wrAN participants, the superior frontal thickness increased compared 
to acAN (d = −0.32, n.s.), while hippocampal volumes continued 
to decrease, with the right hippocampus showing a more prominent 
decrease (d = 0.31, n.s.) compared to the left hippocampus (d = 0.12, 
n.s.) (see Fig.  5b and Fig.  5c).

4. Discussion

This study investigated deviations in brain aging trajectories among 
preadolescent and young adult female participants with acute anorexia 
nervosa (acAN), compared to age-matched HC testing participants. 
Consistent with our hypothesis, acAN participants exhibited signifi-
cantly elevated brain-PAD, suggesting accelerated brain aging relative 
to chronological age. Importantly, lower BMI was associated with 
greater brain-PAD in the acAN group, implicating malnutrition as a 
key factor driving these structural brain alterations. Conversely, brain-
PAD values in wrAN participants were comparable to those of healthy 
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controls, indicating a potential normalization of brain aging with clin-
ical recovery. To further explore whether weight status alone could 
explain these group differences, we performed a GLM analysis with 
group and BMI as predictors of brain-PAD. The results confirmed that 
group differences in brain-PAD remained significant after adjusting for 
BMI, whereas BMI itself was not a significant predictor (p = 0.966). 
These findings suggest that structural brain recovery in wrAN may 
reflect broader neurobiological processes beyond weight restoration 
alone. Additionally, regions such as the hippocampus and superior 
frontal cortex, which contributed most strongly to brain age estimation 
in healthy individuals, also exhibited pronounced structural alterations 
in acAN participants, underscoring their particular vulnerability to the 
neurodevelopmental impact of anorexia nervosa.

4.1. Validation of the brain age estimation model

Our patient cohort was relatively young (10 to 40 years) compared 
to samples used in previous brain aging studies, so we designed our 
brain age prediction model for this developmental period by training 
it on large normative samples (n = 3487) of healthy individuals aged 
5–45 years. Five percent of these individuals were randomly selected 
in 5-year age bins to serve as a validation set, while the remaining 
95% were used for training the predictive models, DKL-GPR and SVR. 
This allowed us to capture the non-linear neurodevelopmental patterns 
typical of this age group more accurately than existing models trained 
predominantly on adult samples.

Among the evaluated models, DKL-GPR outperformed both SVR and 
the widely used BrainAgeR model. DKL-GPR achieved the lowest MAE 
and highest correlation with chronological age on both the validation 
(MAE = 2.33, r = 0.87) and test datasets (MAE = 1.93, r = 0.88 
for HC), with minimal residual age bias after correction. In contrast, 
BrainAgeR, which was trained on adult samples aged 18–92 years, 
exhibited substantial bias and reduced accuracy in our younger cohort. 
In general, making direct comparisons of performance metrics (such 
as MAE, bias) with the BrainAgeR model is inherently limited due to 
differing age distributions.

To formally assess model differences, we conducted bootstrapped 
comparisons of MAEs. DKL-GPR showed a statistically significant im-
provement over BrainAgeR (MAE difference = −0.91 years, 95% CI =
[−1.52, −0.32], p = 0.0024), and also outperformed SVR, though this 
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Fig. 5. Neuroanatomical Comparisons Between acAN, wrAN, and HC. (a) This panel shows group-level comparisons of cortical and white matter structures between acAN patients 
and HC participants. The comparisons are displayed across five structural measures: cortical thickness, cortical volume, cortical mean curvature, cortical surface area, and white 
matter volume. Blue regions represent reductions in acAN relative to HC (negative Cohen’s d values), while red regions indicate increases (positive Cohen’s d values). (b) 
Surface-based maps illustrating the effect sizes of structural changes in acAN compared to wrAN patients. Notable reductions in cortical and subcortical structures are seen in 
acAN, which are partially restored following weight normalization in wrAN. The color bar denotes Cohen’s d effect sizes, ranging from −1.0 (blue) to 1.0 (red), with zero (gray) 
indicating no difference between groups. (c) Bar plots showing the mean volumes of the left hippocampus, right hippocampus, and the mean thickness of the left superior frontal 
cortex in HC, acAN, and wrAN groups. The left superior frontal thickness shows a significant reduction in acAN compared to HC (p = 0.031), while hippocampal volumes show 
non-significant differences across groups.
comparison did not reach significance (MAE difference = −0.17 years, 
95% CI= [-0.3979, 0.0488], p = 0.13). Bland–Altman analyses sup-
ported these findings, showing tighter agreement and less bias for 
DKL-GPR compared to other models. These findings align with previous 
work emphasizing the importance of age-matched training data in brain 
age modeling [94]. The improved performance of DKL-GPR, both in 
terms of accuracy and agreement with true age, reinforces its suitability 
for detecting subtle deviations in neurodevelopment among clinical 
populations.

4.2. Testing brain aging in AN participants

Applying brain age prediction to our clinical cohorts revealed 
clear evidence of advanced brain aging in acAN. Participants in the 
acAN group showed significantly elevated brain-PAD values (median 
= +2.25 years) compared to both HC (median = −0.24 years) and 
weight-restored AN individuals (wrAN, median = +0.26 years). These 
group-level differences were confirmed using a GLM controlling for 
chronological age, where acAN exhibited significantly higher brain-
PAD than HC (𝑝 < 0.001) and wrAN (p = 0.0024), while no significant 
difference was observed between wrAN and HC (p = 0.96). This sup-
ports the hypothesis that advanced brain aging is specific to the acute 
underweight phase of AN and tends to normalize following weight 
restoration.

Additionally, the slope of the regression line between predicted and 
chronological age was significantly lower in acAN compared to healthy 
controls, suggesting that brain aging in acAN is not a gradual process 
but rather appears more accelerated in younger participants, with some 
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normalization in older individuals. This high variability, reflected by 
the wider spread of data points around the regression line, may be 
linked to differences in disease severity or illness duration, with more 
severe cases leading to higher brain-PAD scores. These developmental 
differences were further supported by a formal group-by-age interaction 
analysis. A GLM including a group × age interaction term demonstrated 
a significant interaction effect (groupHC × age: 𝑝 < 0.001; group-
wrAN × age: p = 0.0018), suggesting that the discrepancy between 
predicted and chronological age was more pronounced at younger ages 
among acAN participants. In other words, brain-PAD was highest in 
younger acAN individuals and gradually decreased with age, eventually 
converging toward HC values in adulthood. This pattern supports the 
interpretation that observed brain-PAD elevation in AN is not reflective 
of a uniform acceleration of aging but may instead result from dis-
rupted developmental trajectories during critical neurodevelopmental 
windows. One influential factor might be the level of malnutrition, 
as we observed a significant negative correlation between brain-PAD 
and BMI (r = −0.291, pfdr = 0.0053), indicating that lower BMI is 
associated with more advanced brain aging. Previous studies [23,36,
39] support this finding, showing that reduced cortical volume and 
thickness in AN are often linked to lower BMI and that severe caloric 
restriction induces gray matter atrophy, ventricular enlargement, and 
white matter deficits. Interestingly, this pattern was reversed in the HC 
group, where a significant positive association between BMI and brain-
PAD was observed. In contrast, no significant association was found in 
the wrAN group. These group-specific effects were further supported 
by a significant BMI × Group interaction in the GLM, and follow-
up analyses revealed that the BMI-Brain-PAD relationship significantly 
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differed between acAN and both HC (𝑝 < 0.001) and wrAN (p = 0.025), 
but not between HC and wrAN (p = 0.97).

We also observed a significant negative correlation between brain-
PAD and illness duration (r = −0.423, p = 0.0078) within the acAN 
subgroup from the JUH dataset, suggesting that patients with longer 
illness duration may exhibit a younger predicted brain age relative to 
chronological age. This finding could indicate that younger patients 
are more affected by brain structural changes, leading to a higher 
brain-PAD, or it could reflect some recovery as therapy progresses.

In contrast to acAN, weight-restored participants showed no signifi-
cant difference in brain-PAD compared to healthy controls, but their 
brain age still differed from acAN participants, with a median PAD 
of +0.26 years. Additionally, group comparisons controlling for BMI 
showed that group effects remained significant between acAN and both 
HC (p = 0.031) and wrAN (p = 0.0085), while BMI itself was not 
a significant predictor (p = 0.966). This indicates that normalization 
of brain aging in wrAN is not merely due to regained weight but 
may involve broader neurobiological recovery processes. This supports 
evidence that structural alterations in the brain structure, such as 
cortical volume, thickness, or gyrification, tend to normalize after 
partial or full weight recovery in participants with AN [41,95–98]. It 
is important to note that this observed normalization likely reflects 
reversible effects of malnutrition, rather than the regeneration of neu-
rons. While structural recovery is evident, it is more likely to result 
from restoration of hydration, glial cell volume, synaptic density, and 
remyelination, which are known to be impacted by prolonged caloric 
restriction. Additionally, recovery of hormonal and metabolic balance 
(such as cortisol, estrogen, and leptin) may support neuroplasticity and 
normalization of brain structure. Although true neurogenesis in humans 
is limited, especially beyond early development, changes in supporting 
systems, including astrocytic function and vascular integrity, could 
facilitate tissue recovery. These biological mechanisms may underlie 
the observed reductions in brain-PAD following weight restoration in 
wrAN individuals.

However, the persistence of structural abnormalities after weight 
recovery may reflect the residual effects of long-term malnutrition or 
indicate a need for further therapeutic interventions to address persis-
tent neurobiological deficits. While partial recovery of brain structure 
is evident, local alterations still seem to persist to some extent after 
recovery [99–101]. This residual damage highlights the importance of 
comprehensive treatments that extend beyond weight restoration and 
target long-term neurological health.

Although advanced brain aging is evident in acAN, brain-PAD did 
not correlate significantly with clinical symptom severity (such as 
mood, anxiety, and cognitive functioning) after correction for multiple 
comparisons. This observation aligns with previous research [26,27], 
where structural differences in brain regions like the thalamus and 
orbitofrontal cortex were observed but were not strongly associated 
with cognitive or emotional deficits as measured by clinical scales. 
This suggests that advanced brain aging in AN may be driven more 
by physiological factors, such as malnutrition, than the psychological 
symptoms typically measured.

4.3. Regional changes contributing to advanced brain age in acans

For our model, the most important features for accurately esti-
mating age in healthy individuals were the hippocampal volume (left 
and right) and superior frontal cortical thickness, as identified through 
SHAP analysis. While the hippocampus is well-known for its critical 
role in early brain development, including memory formation, spatial 
navigation, and emotional regulation, it remains functionally and struc-
turally relevant throughout the lifespan. Although neurogenesis in the 
hippocampus is most prominent during childhood, particularly in the 
dentate gyrus, the structure continues to undergo dynamic changes 
in adolescence and adulthood, including synaptic remodeling, stress-
related atrophy, and age-related volume decline [102,103]. Thus, its 
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importance in brain age prediction likely reflects its continuous plas-
ticity and vulnerability, rather than being restricted to a specific age 
period. The hippocampus has also been implicated in both neurode-
velopmental and neurodegenerative disorders, further underscoring its 
broad relevance in models spanning the full age range of our study. 
The hippocampal volume has been shown to expand nonlinearly with 
increasing age during childhood and adolescence [104–106].

We observed an initial rapid hippocampus growth in healthy in-
dividuals that plateaued after age 20, consistent with previous find-
ings of linear growth between ages 5 and 20, followed by a grad-
ual decline [104–106]. In acAN patients, hippocampal growth ap-
peared slower, with a more pronounced decline after age 20. We found 
marginal reductions in left and right hippocampal volumes in the acAN 
group compared to HC, even after adjusting for age. These reduc-
tions were more pronounced in the wrAN group, indicating further 
hippocampal volume loss in weight-recovered patients. The hippocam-
pus has been consistently shown to be reduced in volume in AN 
patients [26,107], potentially contributing to specific cognitive impair-
ments [108]. This hippocampal volume reduction appears not to fully 
normalize after weight recovery [31,109], which might link to certain 
cognitive domains, such as memory and learning, being impaired in 
wrAN [110,111]. A recent study found that structural alterations and 
their recovery after weight-restoration depend on the subfield of the 
hippocampus [112].

However, these volumetric reductions in the hippocampus do not 
lead to overestimating brain age in our model. Since hippocampal 
volume tends to increase during normal aging, as our healthy training 
data shows (see Fig.  4c), the model associates larger volumes with an 
older brain, reflected by a positive SHAP value. Thus, the observed 
hippocampal alterations in acAN do not appear to contribute to a 
positive brain-PAD in these patients. Instead, other structural changes 
likely drive the age overestimation in this group.

Throughout maturation, the brain undergoes significant remod-
eling, with changes continuing into the mid-twenties to early thir-
ties [113–115]. During this period, cortical thickness decreases as white 
matter expands to form neural circuits and enhance brain connectivity. 
These developmental trajectories vary by region, with cortical thinning 
in the middle frontal cortex following a cubic pattern, showing a 
pronounced decrease between ages 10 and 20 [113,115]. The age 
trajectory of superior frontal cortical thickness in healthy individuals 
follows a similar pattern. After a rapid decrease until around age 20, 
cortical thickness stagnates before declining again after 30. In acAN 
patients, this trajectory appears systematically shifted to lower thick-
ness values. Our analysis revealed significant thinning of the superior 
frontal cortex in acAN compared to HC, with a medium effect size (d
= −0.41, pfdr = 0.031), independent of age. Interestingly, in wrAN, 
cortical thickness in this region appeared to normalize.

Given the negative SHAP values, our model links higher superior 
frontal cortical thickness to a younger brain age. Therefore, the ob-
served thinning in this region may contribute to the elevated brain-PAD 
in acAN. Additionally, the normalization of superior frontal cortical 
thickness after weight recovery may help explain the normal brain-PAD 
in wrAN.

Although the overall brain-PAD indicates an advanced brain age in 
patients with acAN, it is important to note that the structural brain 
changes observed in acAN do not simply reflect an accelerated form 
of normal aging. Of the three most critical features used by our model 
to estimate brain age, only one was altered in a way that could explain 
the overestimation in acAN. Additionally, we found that brain-PAD 
was lower in older patients with longer disease duration. If the brain 
changes in acAN represented accelerated healthy aging, we would 
expect brain-PAD to increase with age. This suggests that the structural 
alterations in acAN are more complex than a mere accelerated version 
of normal aging.
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4.4. Comparison with previous studies

To date, only one published study has examined brain age in 
individuals with AN [67]. While this pioneering work provided initial 
evidence of accelerated brain aging in adolescent patients, it was 
limited by several methodological constraints. Their model was trained 
on a relatively small sample of 226 female participants aged 5–23 years, 
using the relevance vector regression (RVR). Feature extraction was 
limited to two structural metrics, GM and WM, derived from voxel-
based morphometry (VBM). Moreover, their test set covered a narrow 
age range (12–23 years), limiting generalizability.

Despite these limitations, the study benefited from a longitudi-
nal design two-time points, focusing primarily on acAN and partial 
weight restoration. At baseline, acAN patients showed an elevated 
BrainAGEGM of +1.79 years compared to HC (95% CI [1.45, 2.13]), 
which significantly decreased after partial weight gain (𝛽 = −1.69; 
CI [−1.93, −1.46]). Interestingly, BrainAGE did not correlate with 
symptom severity or depression, but greater weight gain predicted 
stronger normalization of BrainAGEGM (𝛽 = −0.65; CI [−0.75, −0.54]).

In contrast, our study was designed to address many of these 
methodological limitations. We compiled a large, age-diverse train-
ing dataset of 3487 healthy controls (HCs) across a broad age range 
(5–45 years), drawn from nine public databases and the JUH cohort. 
Our test set included 113 acAN, 35 wrAN, and age-matched HCs from 
both JUH and MGH institutions (see Table  1), allowing us to evaluate 
brain aging across both adolescence and adulthood.

MRI data were processed using FreeSurfer to extract a comprehen-
sive set of 377 cortical and subcortical morphometric features. These 
served as inputs to two machine learning models, SVR and DKL-GPR. 
The DKL-GPR model demonstrated superior performance, achieving an 
MAE of 1.93 years and a high correlation (r = 0.88) in the age-matched 
HC test set (n = 90).

Testing the model on acAN participants revealed significantly el-
evated brain-PAD value (mean = +2.25 years), indicating advanced 
brain aging. Notably, brain-PAD normalized in the wrAN group
(+0.26 years), with significant differences observed between wrAN and 
acAN (p = 0.0026), but not between wrAN and HC (p = 0.98). In 
acAN, brain-PAD was significantly negatively correlated with BMI (r
= −0.291, p = 0.005) and illness duration (r = −0.423, p = 0.0078), 
consistent with the hypothesis that lower BMI and shorter illness 
duration are associated with greater deviations from normative aging. 
Unlike the prior study, we also examined associations between brain-
PAD and eight clinical scales, but no statistically significant correlations 
remained after FDR correction.

In addition to global brain age measures, we performed regional 
comparisons of brain structure between groups. Significant reductions 
in right inferior parietal volume, thickness, and left precentral volume 
were observed in acAN patients. SHAP analysis further revealed that 
left superior frontal thickness was significantly reduced in acAN, a 
finding partially reversed in wrAN participants, who showed increased 
superior frontal thickness. However, hippocampal volumes continued 
to decrease in wrAN participants, with a more prominent reduction in 
the right hippocampus (d = 0.31, n.s.) compared to the left (d = 0.12, 
n.s.) (see Fig.  5b and Fig.  5c).

Together, these findings highlight the advantages of our approach, 
which not only addresses the limitations of prior work but also provides 
deeper insights into the structural brain alterations associated with AN.

4.5. Limitations of the study

While this study offers important insights into advanced brain aging 
in individuals with AN, several limitations should be acknowledged. 
First, the sample size for the wrAN group was relatively small, which 
may have reduced statistical power and limited the generalizability of 
findings regarding structural normalization following weight recovery. 
Second, although participants in the wrAN group met clinical recovery 
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criteria, we lacked consistent data on the duration of weight restora-
tion prior to MRI acquisition, which prevented us from analyzing the 
potential impact of time at a healthy weight on brain structure. Future 
studies should aim to capture longitudinal weight recovery data to 
more precisely model the dynamics of structural normalization. Third, 
our study included preadolescent and adolescent participants, raising 
concerns about segmentation accuracy given that FreeSurfer’s cortical 
and subcortical atlases were developed using adult brain templates. 
We acknowledge this concern and emphasize that previous studies 
have demonstrated the feasibility and acceptable accuracy of FreeSurfer 
in pediatric populations, including children as young as five years 
old [116–120]. Furthermore, we conducted extensive visual quality 
assessments, particularly for younger participants, and confirmed that 
the segmentations were of satisfactory quality. Notably, the observed 
developmental patterns in key cortical regions, such as the superior 
frontal cortex, were consistent with established normative trajectories 
across the lifespan [46,121], further supporting the validity of our 
findings in younger cohorts.

Fourth, sample heterogeneity, in terms of illness duration, severity, 
comorbid conditions, and treatment history, may have introduced addi-
tional variability that was not fully accounted for in our analysis. Future 
studies with more detailed clinical metadata could help disentangle 
these factors. Lastly, the cross-sectional design of the current study 
precludes direct inference about the trajectory of brain aging over time. 
Longitudinal follow-up will be critical to determine whether brain-
PAD changes observed in acute AN persist, reverse, or fluctuate with 
treatment and sustained recovery. By acknowledging these limitations, 
we aim to guide future research efforts toward more refined, longitudi-
nal, and developmentally sensitive investigations of brain aging in AN 
populations.

Additionally, although the test groups were unbalanced in size, 
we used statistical methods (GLMs with robust post-hoc correction) 
that are well-suited for such designs, and all group comparisons were 
interpreted with this limitation in mind.

5. Conclusions

This study extends brain age research in anorexia nervosa by apply-
ing a high-performance deep kernel learning model trained on a large, 
age-diverse female sample of healthy controls (ages 5–45) and tested 
on female patients across a wide clinical age range (10–40 years). By 
integrating a hybrid DKL-GPR model and an expanded neuroanatomical 
feature set, we achieved improved prediction accuracy and interpre-
ability over conventional approaches.

Our results demonstrate that patients with acute anorexia ner-
vosa (acAN) exhibit significantly elevated brain-PAD values, suggesting 
older-appearing brains relative to their chronological age. This over-
estimation was most prominent in individuals with lower BMI and 
shorter illness duration. In contrast, brain-PAD in weight-restored AN 
(wrAN) patients did not differ from healthy controls, and BMI was not a 
significant predictor of brain-PAD in this group. These findings suggest 
that advanced brain aging in acAN may be more closely tied to acute 
malnutrition than to irreversible neurodegenerative processes.

Importantly, among the model’s most influential brain regions, only 
the superior frontal cortex exhibited structural changes consistent with 
elevated brain-PAD in acAN. This implies that advanced brain aging in 
AN may not represent a generalized acceleration of normative aging, 
but rather reflects a distinct and regionally specific neurobiological 
pattern.

Together, these findings underscore the value of brain age predic-
tion models for identifying subtle but clinically meaningful deviations 
in brain structure in eating disorders. Future longitudinal studies are 
needed to clarify the temporal dynamics of brain-PAD changes, their 
relationship to treatment response, and the potential for structural 
recovery across different illness stages.
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