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A perspective on brain-age estimation and its 
clinical promise

Christian Gaser    1,2,3,6 , Polona Kalc    1,6 & James H. Cole4,5

Brain-age estimation has gained increased attention in the neuroscientific 
community owing to its potential use as a biomarker of brain health. 
The difference between estimated and chronological age based on 
neuroimaging data enables a unique perspective on brain development and 
aging, with multiple open questions still remaining in the brain-age research 
field. This Perspective presents an overview of current advancements in the 
field and envisions the future evolution of the brain-age framework before 
its potential deployment in hospital settings.

As chronological age does not comprehensively represent the complex-
ity and heterogeneity of the process of aging, the construct of biological 
age, encompassing various biophysiological measures, has been pro-
posed to explore the reason why aging affects people differently and 
to better determine age-related risks of adverse outcomes1,2. Multiple 
ways of estimating biological age have been developed to improve 
the understanding of the diverse nature of the body’s aging course3–6, 
with brain-age estimation thought to reflect the brain’s biological age7.

Brain-age estimation has provided a novel framework cen-
tered on the general concept of aging patterns, moving away from 
disease-specific comparisons in studies that are restricted by sam-
ple size, pattern specificity and disease heterogeneity. The brain-age 
approach builds on the understanding that the aging human brain 
undergoes characteristic changes and that various factors, includ-
ing disease, can accelerate or slow down the natural aging process of  
the brain8,9.

The brain-age framework typically utilizes machine learning 
(ML) in a prediction task where the machine is trained on brain 
features (that is, structural and/or functional properties of the 
brain) of people without psychiatric or neurological diagnoses, 
and is later applied to new data, resulting in an estimated age. The 
algorithm estimates an individual’s brain age by comparing their 
brain pattern to a sample brain pattern usually observed at their 
given age (Fig. 1a). The difference between the estimated and the 
chronological age is used as a simplified measure of the brain’s aging 
progression. A positive value (that is, older estimated brain age) 
indicates more prominent brain changes that commonly occur with 
aging progression, whereas a negative difference (that is, younger 

estimated brain age) signifies a more youthful brain pattern than 
expected for that individual’s age10.

Brain-age estimation has been applied in various studies investi-
gating psychiatric and neurological conditions, cognitive and physi-
ological markers, genetic factors, as well as environmental and lifestyle 
factors11–15. The implementation of the brain-age method is becoming 
more popular and accessible with the increasing availability of ML 
frameworks and large (open access) magnetic resonance imaging 
(MRI) datasets16. This wealth of data facilitates and improves the overall  
process, ultimately leading to more accurate and reliable assessments 
of brain aging. Multiple advances have been made in brain-age estima-
tion over the past decade and multiple challenges have arisen in the 
field, which we briefly discuss in this Perspective.

Benefits and applications of the brain-age 
estimation
Advances in brain-age estimation can enable the investigation of risk 
or protective factors associated with brain health in development and 
aging. Brain age could be used as a tool to assess the effectiveness of 
interventions in clinical trials of age-associated neurodegenerative 
diseases or aimed at promoting healthy brain aging. By monitoring 
changes in an individual’s brain-age estimate over time, the impact of 
lifestyle changes, pharmacological treatments or cognitive training 
programs on brain aging can be evaluated, leading to development 
of personalized strategies for healthy aging7,12.

The application of brain-age estimation extends beyond research 
settings, as it provides a straightforward and intuitive measure of a 
complex brain-aging pattern, potentially serving as a non-invasive 
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to predict brain age, such as resting-state functional connectivity 
MRI29,30, diffusion MRI31, positron emission tomography32 and other 
data-acquisition techniques, for example, electroencephalography33 
or magnetoencephalography34.

Joining features from multiple modalities in an age-prediction 
model has been shown to improve the performance compared with 
single-modality approaches35–38. The optimal methods for combin-
ing modalities are an open area of research, as part of wider efforts to 
optimize the ‘fusion’ of different data types. This can be ‘early’ fusion, 
such as simple concatenation of features or images (see, for example,  
ref. 35), or ‘late’ fusion such as ensemble methods where brain-age pre-
dictions are generated separately for each modality and then combined 
using averaging or a more sophisticated ensemble approach (see, for 
example, ref. 37). Alternatively, ‘mid’ fusion techniques that define 
latent representations from different modalities, using autoencoders 
or similar methods, before combining these latent representations, 
can be considered39. Not only do brain-age prediction models stand 
to benefit from developments in data fusion research but also the 
brain-age paradigm serves as a useful ‘sandpit’ in which to develop 
such methods for neuroimaging, as abundant imaging data with age 
labels are readily available to the community.

Algorithm
The amount and type of available input can help determine the choice 
of the algorithm40, which in turn affects the results of brain-age pre-
diction41,42 and the associations with cognitive measures43. Among 
the possible (non-)parametric, (non-)linear, Bayesian, tree‐based and 
kernel‐based models that have been developed, brain-age studies utiliz-
ing standard ML algorithms have predominantly employed relevance 
vector regression18, Gaussian process regression19, support vector 
regression23 or extreme gradient boosting (XGBoost)22.

With the advances in data sharing and aggregation, the shortage  
of data is often a trivial problem, and in recent years DL models started 

biomarker of brain health10. It supports early clinical identification of 
individuals at higher risk of neurodegenerative disorders, as well as 
disease staging and further monitoring17.

Computational aspects of brain-age prediction
With the advancement of MRI technologies and the availability of large 
neuroimaging datasets, such as UK Biobank (https://www.ukbiobank.
ac.uk/), Open Access Series of Imaging Studies (OASIS; https://www.
oasis-brains.org/), Nathan Kline Institute/Rockland Sample (NKI; 
https://fcon_1000.projects.nitrc.org/indi/pro/nki.html), Informa-
tion eXtraction from Images (IXI; https://brain-development.org/
ixi-dataset/) and many others, multiple brain-age algorithms have 
emerged, using various terms to name the difference between the 
estimated and chronological age, such as brain-age-gap estimate 
(BrainAGE)18, brain-predicted age difference (Brain-PAD)19, brain-age 
delta20–22 and brain estimated age difference (Brain-EAD)23. Despite 
differences in nomenclature, general commonalities of the brain-age 
estimation process can be identified (Fig. 1b). However, there is cur-
rently no standard way of estimating the brain age and changes in the 
common steps can lead to variation in brain-age estimation accuracy 
and subsequent sensitivity to disease effects.

Input
A brain-age model’s performance depends heavily on the amount and 
type of input data, which can range from resampled raw data to fully 
preprocessed analysis-ready brain features. The first can be used in 
deep learning (DL) workflows, whereas standard ML algorithms typi-
cally require feature selection and/or feature reduction24.

The most commonly utilized neuroimaging features so far 
have been from structural MRI, preprocessed in either region- or 
voxel/vertex-wise manner, resulting in measures such as brain tis-
sue volumes18,25,26, cortical thickness, area and curvature27,28. In 
addition, features from other imaging modalities have been used 
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Fig. 1 | The brain-age estimation framework. a, The brain-age estimation 
framework stems from the idea of creating a model that fits well to the healthy 
aging brain, but shows greater errors in prediction in non-normative cases.  
b, There is at present no standard way of building a brain-age estimation model; 
however, here are depicted common steps of the workflow. The initial input 
(MRI, positron emission tomography (PET), electroencephalography (EEG), 

magnetoencephalography (MEG)) can be (minimally) preprocessed and fed 
to the algorithm. CNN, convolutional neural networks; SFCN, simple fully 
convolutional network; ResNet, residual network CNN; GPR, Gaussian process 
regression; RVR, relevance vector regression; SVR, support vector regression. 
The estimated age can be compared with the chronological age and can be 
debiased via statistical procedure.
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gaining more attention in the field. Various models, such as convo-
lutional neural networks44, ResNet45 and simple fully convolutional 
network46, have been developed to predict the brain age. These 
models utilize either slice-based (two-dimensional) or voxel-based 
(three-dimensional) input types and some of the pretrained brain-age 
models are openly available online20,47–49.

Moreover, the development of transformers and diffusion models 
for natural language processing or computer vision, respectively, have 
recently made pronounced societal impacts. This has led to a new wave 
of mainstream interest in artificial intelligence, through technologies 
such as ChatGPT50 or Stable Diffusion51. These approaches have already 
been adopted to estimate brain age, including the vision transformer 
(ViT)52 and graph transformer53, and the latent diffusion model54. 
However, no benchmark study comparing the brain-age prediction 
performance of these emerging DL models, or DL more generally, with 
‘classic’ ML methods has yet been published55, so the extent to which 
these methods improve performance remains an open question. For 
an in-depth overview of the ML and DL algorithms in the field, we direct 
the reader to recent review papers13,55, respectively.

Output
The output of the brain-age algorithm is the individual’s predicted 
age, which is typically a single whole-brain measure or a set of values 
if trained on separate brain regions56,57. By subtracting the chrono-
logical age from the predicted age, we obtain the measure of interest, 
which is not independent from age and shows an underestimation in 
older individuals and overestimation in younger individuals21,58,59. To 
remove the age dependency, a so-called age-bias correction can be 
applied (that is, regressing out the effects of age)60. Several propo-
sitions of statistical age-bias corrections have been made, some of 
which either use chronological age in the correction21,22,59 or not25. 
The choice of age-bias correction method can influence the final per-
formance accuracies61, while the source and amount of data used to 
estimate the regression parameters for the correction strongly affect 
the results62. The resulting gap, either age-bias corrected or uncor-
rected (with age added as a covariate in further statistical models), 
can be used in further (brain–behavior) analyses. Potentially, the most 
transparent method is to avoid explicit age-bias correction and rely on 
using age as a covariate, as the subsequent statistical analyses should 
provide the same results58.

Theoretically, an accurate brain-age model has a low mean abso-
lute error on a test set of healthy individuals and results in high cor-
relation between estimated and chronological age. Furthermore, 
it enables reliable and consistent estimations in a short-term test–
retest or longitudinal scenario, and is generalizable to different 
datasets62. It makes valid predictions in healthy and clinical groups, 
and demonstrates construct validity by meaningful associations 
with other physiological and cognitive measures. However, owing 
to various factors contributing to differences in model accuracy, 
it is often impossible to directly compare the brain-age models’  
performance61,63.

Challenges and advancements of brain-age 
estimation
Recent breakthroughs in brain-age research have brought to light 
new challenges in the field. We here envision the prospects of further 
research topics as well as the challenges that need to be addressed to 
make the brain age a useful biomarker in the hospital settings (Fig. 2).

Brain-age research
The field lacks consensus regarding the construction and evaluation 
of developed brain-age models. Several initiatives have sought to 
establish a platform for standardization and benchmarking of both 
new and extant brain-age models63,64, and a recent study conducted a 
benchmark analysis on various publicly available brain-age models65, 
underscoring the importance of further work in this area. Although 
these recent attempts at standardization have provided a welcome 
framework to compare the accuracy and reliability of different mod-
els, they lack the inspection of validity of brain age as a biomarker. In 
fact, it is not clear whether the most accurate models really provide 
the most useful biomarkers66,67, as they may overlook the meaningful 
biological information necessary to discriminate between the healthy 
and clinical population20.

The brain-age method provides an estimate of the brain’s biologi-
cal age, capturing not only relevant biological variance (of aging) but 
also modeling- and data-related noise7,17. Further research is needed 
to disentangle this variance and to uncover the underlying biological 
mechanisms of brain aging within the brain-age paradigm. As has been 
pointed out, brain age does not only necessarily show the patterns of 
brain aging but also could reflect the congenital and/or early-life brain 
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Fig. 2 | Advancements and challenges in the brain-age field. For a brain-age 
measure to be applied in clinic as a biomarker, it must be accurate, reliable and 
valid. Further scientific endeavors in standardizing the data, models, measures 
and routines are necessary before the potential approval by national agencies. 
In addition to improving the accuracy of the models, the validity of the measure 
will have to be investigated along with reducing the black-box factor. Reliable 
longitudinal predictions are essential for monitoring the progression of brain 

changes, and uncertainty-aware approaches can increase the clinicians’ trust in 
predictions. After the spillover into the hospital settings, the initial efforts are 
expected in the areas of technical implementations as well as improving quality 
of medical imaging data (by computational advancements in DL preprocessing 
or within the brain-age model itself). The ethical use of this measure is crucial, 
particularly given the growing availability of imaging data and portable low-field 
scanners. PACS, Picture Archiving and Communication System.
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variability that continues through the lifespan (for example, a person 
might have larger ventricles since their childhood)68.

Moreover, brain-age estimation can be subjected to confounding 
factors related to input characteristics deriving from scanner differ-
ences, image acquisition protocols, image quality, preprocessing 
pipelines and so on67,69,70. For models to generalize better to other 
datasets, harmonization of data can improve the results of brain-age 
estimation71,72, while transfer learning45,73 can provide another possi-
ble solution. To establish the brain age as a clinical biomarker, future 
research endeavors are therefore expected in the fields of neurobiologi-
cal underpinnings of brain age as well as modeling and data-acquisition 
related factors that contribute to the observed age differences.

In addition, if the brain age is to be a valuable monitoring meas-
ure in hospital set-ups, it should provide reliable and consistent 
longitudinal predictions. As the method builds on cross-sectional 
variability, it has a limited validity from a longitudinal perspective68. 
The dependence on cross-sectional data for training potentially 
renders the method insensitive to cohort effects and can limit the 
possibility to detect longitudinal changes due to individual devel-
opment74. Nevertheless, a recent application to a longitudinal birth 
cohort study has demonstrated that brain-age measure reflects both 
congenital and aging differences74, shows a longitudinal increase 
over time in early onset Alzheimer’s disease75, and corresponds to 
the presence of brain pathologies and prospective conversion to  
Alzheimer’s disease32,76.

The longitudinal perspective of the brain-age method has to be 
further investigated. One of the substantial bottlenecks both compu-
tationally and in terms of application is the availability of longitudinal 
data. The continuation of establishing collaborative frameworks for 
data sharing and aggregation, as well as building open-source tools 
and frameworks, will help overcome these and similar problems in the 
future. In addition, future development of the brain-age field will rely 
on the advancements in artificial intelligence and the computational 
outputs of image processing.

An initial critique of brain-age estimation pertained to its 
inherently black-box methodology, a factor contributing to its  
limited integration into clinical practice10. The advances in interpret-
able ML/explainable AI have made the brain-age estimation a much 
less black-box type of measure and various approaches have been 
utilized to gain understanding of the models’ prediction. Different 
model-agnostic77 and specific methods, such as saliency maps32,49,78, 
as well as explainable prototype learning methods79 have been imple-
mented. However, the lack of ground truth for the deviations from 
healthy brain aging make validation challenging, so the explainability 
of the models should be further investigated.

Not commonly in use in the field of brain-age estimation but in 
line with current DL practices, the uncertainty of the estimation has 
also been recognized as an important step in brain-age modeling. 
Providing confidence intervals or similar around individual point 
predictions should increase end-user (for example, clinician) trust in 
the predictions, increasing the likelihood that brain age could be widely 
adopted. Recent studies implemented uncertainty-aware approaches 
to brain-age estimation47,80,81 and more advances are expected from this 
area of research. Further contributions from the computational per-
spective are also possible in the areas of ensemble (DL) architectures, 
automated machine learning (autoML82), reduction of computational 
complexity and others.

Moreover, a recent concern has been raised with regard to statis-
tical age-bias correction, which can in certain cases artificially inflate 
the model’s prediction accuracy or, under specific circumstances, 
may cause circularity in the procedure83. The authors question the 
interpretation of statistically modified brain age and request for a 
better measure to describe deviation from the norm. Nevertheless, 
brain-age research in narrow age cohorts, where the confounding 
effect of chronological age is removed, have validated the sensitivity 

of brain age to other aging biomarkers or clinical outcomes25,84. These 
findings refute the circularity argument, but alternative concepts of 
deviation from the norm are still important to consider. Analogous to 
growth charts in pediatric care, normative modeling may present a 
possible alternative85–87.

Application in the clinic
The initial conceptualization of brain age as a biomarker for brain health 
envisioned its application in hospital settings. However, despite over 
a decade of development, the brain-age framework has yet to mature 
before the implementation in clinical practice. Some of the funda-
mental challenges essential for enhancing the method were briefly 
presented before. Here we envision further (computational) advance-
ments that could facilitate the method’s transition into healthcare.

Most brain-age models are trained and tested on high-resolution 
data from curated databases that do not represent current prac-
tices in clinical imaging, which typically provides low-resolution 
‘two-dimensional’ data11,49. However, a step in direction of clinical appli-
cation has recently been made by training a DL model on raw clinical 
data of various MRI modalities, resulting in a potentially applicable 
screening tool for routine hospital examinations49. Computational 
advances that could prove beneficial in the context of clinical applica-
tion further include models that are agnostic to the image resolution 
and MRI contrast type88, facilitated by using synthetic images for learn-
ing89, MRI-aware data augmentation methods to reduce the impact 
of, for example, bias field inhomogeneities90, or image-enhancement 
methods that are designed to improve the poorer-quality images91,92. 
This is important as the majority of clinical neuroimaging sites do not 
have access to the higher-quality MRI scanners available in research 
settings, and often have much higher throughput and less capacity 
for quality assurance and rescanning patients. Portable low-field MRI 
scanners may become more common in clinical situations93. Therefore, 
quality-agnostic models or image-enhancement methods could be 
highly beneficial in enabling brain-age estimation in people who cannot 
normally undergo higher-field MRI (that is, ≥1.5 T).

Before implementation in hospital settings, the approval of 
national agencies will be necessary. Ensuring that brain-age mod-
els can be deployed on hospital computer systems (for example, 
Picture Archiving and Communication System) will be essential 
for clinical access to brain-age results, and already commercial 
vendors are marketing their own versions of brain age, to be used 
in hospital settings (for example, BrainKey, https://www.brainkey.
ai/). With clinical deployment comes the requirements of software 
consistency and back-compatibility, so that results can be reli-
ably generated in different locations and at different times, even if 
computational advances render older models obsolete. Software 
‘containerization’ will be a key part of this, providing a standalone 
virtual environment including the relevant dependencies, so that 
brain-age models can be run on different operating systems and legacy  
versions maintained.

Another important computational development relevant to 
clinical deployment is federated learning, which has emerged as a 
promising way to overcome issues around privacy and data security 
for biomedical research, including neuroimaging94. With federated 
learning approaches, individual-level data do not need to be shared 
between sites, only the locally learned model parameters are central-
ized or ‘federated’. This potentially opens up access to much larger 
datasets for training brain-age models, and has already shown some 
promise95. The algorithms used for the federated aggregation of local 
parameters are a key component of the federated learning process, 
and are an active area of research96. As an alternative to federated 
learning, the Enhancing Neuro Imaging Genetics through Meta Analysis 
(ENIGMA) consortium, has been established to facilitate the pooling 
of anonymized neuroimaging data (for example, FreeSurfer volumes 
and cortical thickness values) for either meta- or mega-analysis. The 
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ENIGMA Brain Age working group (https://enigma.ini.usc.edu/ongo-
ing/enigma-brainage/) is leading efforts to optimize models and har-
monize procedures for the purpose of brain-age prediction from such 
datasets, including in major depressive disorder and schizophrenia97–99.

Despite numerous potential improvements, further development 
of the brain-age method is similarly ambiguous as the progress in 
other measures of biological aging, and could raise ethical concerns 
associated with employment, legal matters, insurance and healthcare 
provision100,101. Although the costs of MRI scanning are currently too 
high to be considered by the state authorities, life insurance companies 
or other actors, the potential of lowering these costs and the subse-
quent availability of brain-age estimation as a non-invasive Alzheimer’s 
disease biomarker before the onset of the symptoms could be of rel-
evance to these stakeholders. Furthermore, additional questions about 
stigma, discrimination and stress inducement could arise in situations 
of revealing the higher brain-age estimation, especially for the working 
population without ongoing memory impairments101.

Therefore, we caution against using brain-age estimation as a 
general screening tool. As demonstrated in the Nun study102, obvi-
ous pathological changes in the structure of post mortem brains of 
the participants was not reflected in their cognition before death. A 
large difference between the estimated and chronological age of the 
individuals does not provide sufficient proof to determine diagnoses. 
The brain has a remarkable capacity for plasticity, adaptation and com-
pensation, which can help maintain normal cognitive abilities even in 
the presence of substantial brain atrophy103,104. It is therefore important 
to consider other factors such as cognitive performance, functional 
ability, and the presence or absence of neurological symptoms to gain 
a full understanding of an individual’s brain health. Brain-age estima-
tion can rather serve as a supportive biomarker in helping physicians 
identify potential deviations from the normal aging and monitoring 
the progression of brain changes.

Conclusion
The method of brain-age estimation represents a departure from tra-
ditional approaches in analyzing brain imaging data, providing a com-
prehensive understanding of health- and age-related brain changes. 
By utilizing the advantages of ML while focusing on deviations from 
normal aging patterns, brain-age estimation provides a simple quan-
tification of a complex pattern of structural brain changes associated 
with aging and disease. The approach minimizes confounding factors 
and allows for a more accurate assessment of brain aging within indi-
viduals, regardless of their specific clinical condition or disease stage. 
Many advances have been made in the field in recent years; however, 
further research supported by computational science is warranted to 
unravel the method’s potential in progressing our understanding of 
the brain and to apply it in clinical practice.
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