
Vol.: (0123456789)

GeroScience 
https://doi.org/10.1007/s11357-025-01836-x

SHORT COMMUNICATION

BrainAGE in superagers: cross‑sectional and longitudinal 
analyses in older adults aged 80+ with youthful episodic 
memory

Christian Gaser · Marta Garo‑Pascual   · 
Bryan A. Strange

Received: 8 March 2025 / Accepted: 4 August 2025 
© The Author(s) 2025

Abstract  Episodic memory, the ability to recall 
past events, is particularly vulnerable to ageing. A 
decline in episodic memory performance is gener-
ally considered part of ageing. However, the episodic 
memory performance of superagers —defined as 
individuals aged 80+ years old with episodic memory 
of people 30 years younger— is superior to that typi-
cal of their chronological age. The aim of this study 
was to determine whether the discrepancy between 
the superager’s episodic memory and chronological 
age is also evident in their brain age. A BrainAGE 
(Brain Age Gap Estimation) approach, a multidimen-
sional computational neuroanatomical method that 
uses structural neuroimaging data to estimate bio-
logical brain age, was applied. The study population 
comprised 64 superagers (mean age = 81.9 ± 1.9) 
and 55 age-matched typical older adults (82.4 ± 1.9). 

Cross-sectional analyses revealed a negative Brain-
AGE score for superagers (mean = -0.95 ± 2.36) 
indicating a deceleration of the ageing process. By 
contrast, typical older adults showed  an average 
score close to zero (0.05 ± 3.03) consistent with their 
chronological age. The BrainAGE score of superag-
ers was found to be lower relative to typical older 
adults, and the progression over a 5-year follow-up 
period was slower in superagers, in keeping with their 
youthful memory ability. Therefore, superagers have 
a younger brain than those of typical older adults, 
suggesting that their ageing mechanisms may involve 
resistance to age-related brain structural changes. 
However, despite a 30-year gap in episodic memory, 
their BrainAGE score differed by only one year, indi-
cating that factors beyond brain structure contribute 
to the superager phenotype.
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Introduction

Chronological age is a measure of calendar years. 
However, it does not necessarily reflect the accumula-
tion of changes that may or may not occur as part of 
the physiological ageing processes. The idea of bio-
logical age has been raised as a better proxy of age-
related changes [1, 2] and has been conceptualise in 
many forms, including epigenetic [3, 4], telomeric 
[5], metabolic [6], or transcriptomic markers [7] and 
organ-specific clocks such as the brain or the heart [8, 
9], among others.

As our interest is to understand the ageing mecha-
nism of superagers, an elderly population with the 
episodic memory function of individuals 30  years 
younger [10–12], we focused on their brain age. The 
most extended brain age estimations are derived from 
brain imaging data and yield a single value that cap-
tures the  complex multidimensional pattern of the 
brain [13]. The prediction models for brain age are 
trained on neuroimaging datasets from healthy indi-
viduals. These are pre-processed and down-sample to 
prevent over-fitting. Subsequently, kernel regression 
techniques are then applied to automatically select 
the relevant features of the multidimensional pattern 
of the brain. From this model of brain age, individual 
brain ages can be estimated. This approach has dem-
onstrated to be sensitive in detecting brain changes 
associated with developmental, healthy ageing and 
neurodegenerative processes [14]. Brain age has been 
shown to predict the conversion from mild cogni-
tive impairment to Alzheimer’s disease [15] and has 
also shown an association with cognitive functions in 
healthy ageing populations, more consistently with 
psychomotor speed but also other cognitive functions 
such as semantic verbal fluency, visual attention, or 
cognitive flexibility [16–18].

The brains of superagers exhibit a reduced atro-
phy rate in global grey matter terms, including both 
grey matter volume [12] and cortical volume [19]. In 
particular, a slower grey matter atrophy rate has been 
observed in the medial temporal lobe of superagers 
relative to age-matched peers [12]. A younger cohort 
of superagers (72.7  years on average) showed a 
smaller brain age relative to typical older adults [20]. 
The goal of estimating the brain age in a cohort of 
superagers over 80 years old is to determine whether 
their brains are younger later in life than their peers 
with normal memory for their age.

In this study, the BrainAGE (Brain Age Gap Esti-
mation) approach was implemented, defined as the 
gap between the estimated brain age derived from the 
application of kernel regression methods to structural 
MRI (magnetic resonance imaging) data [14, 21] and 
chronological age. Positive values indicate acceler-
ated ageing, and negative values indicate decelerated 
ageing. BrainAGE was calculated in 64 superagers 
and 55 typical older adults from the Vallecas Project 
cohort [12, 22]. The scores were compared between 
the two groups both cross-sectionally and longitudi-
nally over a 5-year follow-up period.

Methods

Participants

In this study, the sample of superagers and typical 
older adults was drawn from the single-center, com-
munity-based Vallecas Project, a longitudinal cohort 
in Madrid, Spain. The Vallecas Project comprises 
1,213 participants, all Caucasian ethnicity, aged 70 
to 85 years at recruitment, living independently, with 
a survival expectancy of at least four years, and free 
from neurological or psychiatric disorders [22]. All 
participants provided written informed consent, and 
the project received approval from the Ethics Com-
mittee of the Instituto de Salud Carlos III.

We defined superagers as individuals aged 80 years 
or older with episodic memory performance equiva-
lent to that of individuals 30 years younger [10–12]. 
Criteria for this analysis included age, episodic mem-
ory performance, cognitive performance in non-mem-
ory domains, stability of episodic memory and MRI 
availability. Both superagers and typical older adults 
were at least 79.5 years old when their episodic mem-
ory was assessed using the free delayed recall score 
on the Spanish Free and Cued Selective Reminding 
Test. Superagers were required to perform at or above 
the mean score of adults aged 50–56 years with simi-
lar educational attainment, while typical older adults 
scored within one standard deviation of the normative 
values for their age and education attainment accord-
ing to the Spanish NEURONORMA project [23]. 
Further details on the selection process for superag-
ers and typical older adults from the Vallecas Project 
were published previously [12].
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MRI images acquisition

MRI images were acquired using a 3 Tesla MRI 
(Sigma HDxt GEHC, Waukesha, USA) with a phased 
array 8 channel head coil. T1-weighted images (3D 
fast spoiled gradient echo with inversion recovery 
preparation) were collected using a TR of 10  ms, 
TE of 4.5 ms, FOV of 240 mm and a matrix size of 
288 × 288 with slice thickness of 1  mm, yielding a 
voxel size of 0.5 × 0.5 × 1 mm.

BrainAGE estimation

The MRI data were preprocessed using CAT12.9 [24], 
focusing on grey matter segmentation. These segmen-
tations were then affinely registered and resampled to 
both 4 mm and 8 mm and smoothed with both 4 mm 
and 8 mm full-width half-maximum (FWHM) Gauss-
ian kernel. To estimate BrainAGE, we used a training 
dataset of 601 subjects ranging in age from 70.0 to 
97.2 years, with a mean age of 76.4 (standard devia-
tion (SD) = 4.9) years, consisting of 294 males and 
307 females. The resulting four BrainAGE estimates 
were integrated using a weighted average approach, 
with weights assigned according to the squared mean 
absolute error (MAE) of each model. In addition, a 
linear trend correction was applied to adjust for any 
age-related bias to ensure more accurate and reliable 
BrainAGE estimates. The MAE of the resulting brain 
age prediction model is 2.40 years.

Statistical analysis

Before conducting cross-sectional group compari-
sons, the normality of the variables was assessed by 
visual inspection with Q-Q plots and by the Shap-
iro–Wilk normality test. Chi-squared tests and Fish-
er’s exact tests were used for comparisons of categor-
ical data and two-sample t-tests and Mann–Whitney 
U test (two-tailed) were used for continuous variables 
with significance level set at 0.05.

Longitudinal trajectories of BrainAGE were stud-
ied with a linear mixed effects model built with the 
lme4 package in R [25] where BrainAGE score was 
fitted with scaled, but not centred, chronological age, 
group and the interaction between scaled chronologi-
cal age and group as fixed factors together with the 
random intercept and the random slope.

All analyses were performed using R version 4.1.2 
(https://​www.r-​proje​ct.​org/).

Results

Superagers and typical older adults were matched for 
chronological age. Although there were no significant 
differences in the group means (Table 1), the distri-
bution differed between them (Fig.  1A). Therefore, 
BrainAGE was adjusted for chronological age to con-
duct the cross-sectional group comparisons. Adjusted 
BrainAGE was found to be significantly smaller 
in superagers than in typical older adults (Table  1, 

Table 1   Cross-sectional characteristics of superagers and typical older adults

Superagers
(n = 64)

Typical older adults
(n = 55)

Statistic P-value

Demographics
  Age, mean (SD), years 81.9 (1.9) 82.4 (1.9) Z = −1.8 0.08
  Women, No. (%) 38 (59) 35 (64) X = −0.1 0.77
  Education, mean (SD), years 14.6 (6.0) 11.7 (7.2) Z = 2.4 0.02

Neuropsychology – selection criteria variables
  Free Cued Selective Reminding Test (free 

delayed recall), mean (SD)
13.4 (1.4) 6.5 (1.6) Z = 9.4  < 2 × 10–16

  Semantic Fluency Test (animals), mean (SD) 21.2 (4.8) 15.9 (4.1) t = 6.5 2 × 10–9

  Digit Symbol Substitution Test, mean (SD) 21.2 (6.1) 15.3 (5.8) t = 5.4 4 × 10–7

  15-Boston Naming Test, mean (SD) 13.8 (1.4) 11.5 (2.5) Z = 5.4 7 × 10–8

BrainAGE score
  BrainAGE score (age adjusted), mean (SD) −0.95 (2.36) 0.05 (3.03) t = −1.97 0.05

https://www.r-project.org/
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Fig. 1   BrainAGE in superagers and typical older adults. A Dif-
ference in chronological age distribution between superagers 
and typical older adults. B  Cross-sectional BrainAGE scores 
adjusted for chronological age presented as box and whisker 
plots and C  density plots show a significantly smaller score in 
superagers relative to typical older adults (dashed line represents 
group means). D  Comparison of chronological age and esti-
mated brain age reveals whether an individual has accelerated 

or decelerated brain ageing. The red point cloud indicates that 
superagers have a greater tendency to decelerated brain ageing 
than typical older adults (blue cloud). E  Individual longitudi-
nal evolution of BrainAGE scores (black lines) and (F) group 
predictions illustrate a significant group-by-chronological-age 
interaction indicating a faster brain ageing in typical older adults 
(blue) than in superagers (red). The shaded areas represent the 
95% confidence interval
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Fig.  1B-C). While superagers exhibited a negative 
mean BrainAGE score, indicating decelerated brain 
ageing on average, typical older adults displayed an 
average score close to zero, indicating that their brain 
is ageing at the pace it is supposed to by their chrono-
logical age (Fig. 1D).

Longitudinal examination of BrainAGE, which 
involved MRI scans acquired in equivalent yearly 
follow-up visits from both superagers and typical 
older adults (superagers: mean (SD) visit number 
5.17 (1.05); typical older adults: mean (SD) visit 
number 5.05 (1.35)), revealed a significant group-
by-chronological-age interaction (b (se): −4.99 
(2.30), P = 0.03). Typical older adults showed a faster 
increase in BrainAGE across time relative to super-
agers (slope (se), BrainAGE unit/one standard devia-
tion of scaled age: superager: 1.0 (2.1); typical older 
adult: 5.4 (2.4)) (Fig. 1E-F) indicating that the brain 
of superagers is ageing at a slower rate compared to 
typical older adults.

Discussion

The BrainAGE method provides a single value that 
captures the multidimensional ageing patterns pre-
sent within brain structural MRI images. At the 
cross-sectional level, superagers exhibited a signifi-
cantly lower BrainAGE score in comparison to typi-
cal older adults. The negative average of BrainAGE 
score in superagers at cross-sectional level is indica-
tive of deceleration in their brain ageing. This finding 
dovetails with the significantly slower BrainAGE load 
over time in superagers compared to typical older 
adults. Therefore, using this age-specific method, 
superagers over 80 have an overall younger brain than 
typical older adults.

The most plausible is that superagers represent an 
extreme form of normal ageing outside of the patho-
logical spectrum, as evidenced by the levels of blood 
biomarkers associated with neurodegeneration [12, 
26–28]. Extending the terminology of Alzheimer’s 
disease [29] to the context of normal ageing, resist-
ance refers to the avoidance of the effects of ageing 
and, in terms of brain age, will translate into a decel-
eration of the ageing process. Resilience, on the con-
trary, is the ability to cope with age-related changes 
and will translate into a similar estimated brain age 
and chronological age. The results of this study 

support the idea that the potential mechanism under-
lying grey matter ageing in superagers is resistance to 
age-related changes [12].

Given that superager’s episodic memory perfor-
mance is equivalent to people in their 50s, and typi-
cal older adults perform average for their 80s, it is 
reasonable to expect a large magnitude in BrainAGE 
differences. The differences in BrainAGE between 
the groups are significant cross-sectionally and lon-
gitudinally, however, the cross-sectional differences 
in BrainAGE between groups is ~ 1 year. There are a 
number of possible explanations for the magnitude of 
this difference, which are not mutually exclusive.

On the one hand, superagers are elders defined by 
excellent episodic memory for their age, but it is debat-
able whether the superager phenotype recapitulates a 
holistic approach on healthy ageing. Superagers out-
perform typical older adults on non-memory tests, 
thus they also excel in other cognitive domains other 
than episodic memory [12, 26, 30, 31]. Beyond cogni-
tion, there is also evidence that superagers have better 
mobility and better mental health, less hypertension 
and hyperglycaemia, or more satisfying social relation-
ships [12, 32]. However, it remains unclear whether 
these attributes associated with superageing are com-
mon to all superagers, or whether the superager group 
is heterogeneous. In the case of a heterogeneous group, 
the fact that all attributes of superagers (in the cogni-
tive, mental, motor or social domain, etc.) do not con-
verge in the same person could explain the discrepancy 
between the expected and the observed magnitude of 
differences in BrainAGE.

On the other hand, the modest BrainAGE differ-
ences between groups might be attributable to a rela-
tively late emergence of brain structural differences 
in superagers. By the age of 75, five years prior to 
the age at which individuals could be classified as 
superagers or typical older adults, total grey matter 
volume and ROI-based white matter microstructural 
properties including fractional anisotropy and mean 
diffusivity were indistinguishable between the super-
ager and the typical older adult group reported here, 
despite the already existing differences in episodic 
memory performance [12, 33]. It is possible that 
functional differences precede structural ones. Conse-
quently, future research that combines the structural 
brain clock currently employed with other functional 
brain clocks [34] might show a larger magnitude of 
the effect.
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