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Abstract

A large range of sophisticated brain image analysis tools have been developed by the neuroscience community, greatly advancing
the field of human brain mapping. Here we introduce the Computational Anatomy Toolbox (CAT)—a powerful suite of tools for brain
morphometric analyses with an intuitive graphical user interface but also usable as a shell script. CAT is suitable for beginners, ca-
sual users, experts, and developers alike, providing a comprehensive set of analysis options, workflows, and integrated pipelines. The
available analysis streams—illustrated on an example dataset—allow for voxel-based, surface-based, and region-based morphometric
analyses. Notably, CAT incorporates multiple quality control options and covers the entire analysis workflow, including the prepro-
cessing of cross-sectional and longitudinal data, statistical analysis, and the visualization of results. The overarching aim of this article
is to provide a complete description and evaluation of CAT while offering a citable standard for the neuroscience community.
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Background

The study of the human brain using neuroimaging methods is still
in its infancy, but rapid technical advances in image acquisition
and processing are enabling ever more refined characterizations
of its micro- and macro-structure. Enormous efforts, for example,
have been made to map differences between groups (e.g., young
vs. old, diseased vs. healthy, male vs. female), to capture changes
over time (e.g., from infancy to old age, in the framework of neu-
roplasticity, as a result of a clinical intervention), or to assess
correlations of brain attributes (e.g., measures of length, volume,
shape) with behavioral, cognitive, or clinical parameters. Popu-
lar neuroimaging software packages include tools for analysis
and visualization, such as SPM (RRID:SCR_007037) [1], FreeSurfer
(RRID:SCR_001847) [2], the Human Connectome Workbench [3],
FSL (RRID:SCR_002823) [4], BrainVISA [5], CIVET [6], or the LONI
tools [7], just to name a few.

SPM (short for Statistical Parametric Mapping) is one of the
most frequently used software packages, which works with MAT-
LAB (RRID:SCR_001622) as well as Octave. Its library of accessible
and editable scripts provides an ideal basis to extend the reper-
toire of preprocessing and analysis options. Over the years, SPM
has inspired developers to create powerful tools that use SPM’s
functionality and interface [8]. These tools are more than just ex-

tensions of SPM, offering a comprehensive range of cutting-edge
options across the whole analysis spectrum, from the initial data
processing to the final visualization of the statistical effects.

One such tool is CAT (short for Computational Anatomy Tool-
box [9]). CAT constitutes a significant step forward in the field of
human brain mapping by adding sophisticated methods to pro-
cess and analyze structural brain magnetic resonance imaging
(MRI) data using voxel-, surface-, and region-based approaches.
CAT is available as a collection of accessible scripts, with an intu-
itive user interface, and uses the same batch editor as SPM, which
allows for a seamless integration with SPM workflows and other
toolboxes, such as Brainstorm [10] and ExploreASL [11]. Not only
does this enable beginners and experts to run complex state-of-
the-art structural image analyses within the SPM environment,
but it will also provide advanced users as well as developers the
much-appreciated option to incorporate a wide range of functions
in their own customized workflows and pipelines.

Findings
Concept of CAT

CAT12 is the current version of the CAT software and runs in MAT-
LAB (MathWorks) or as a standalone version with no need for a
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Figure 1: Elements of the graphical user interface. The SPM menu (A) and CAT menu (B) allow access to the (C) SPM batch editor to control and
combine a variety of functions. At the end of the processing stream, cross-sectional and longitudinal outputs are summarized in a brain-specific
1-page report (D, E). In addition, CAT provides options to check image quality (F) and sample homogeneity (G) to allow outliers to be removed before
applying the final statistical analysis, including threshold-free cluster enhancement—TFCE (H); the numerical and graphical output can then be
retrieved (I), including surface projections (J). For beginners, there is an interactive help (K) as well as a user manual (L). For experts, command line

tools (M) are available under Linux and MacOS.

MATLAB license. It was originally designed to work with SPM12
[12] and is compatible with MATLAB versions 7.4 (R2007a) and
later. No additional software or toolbox is required. The latest ver-
sion of CAT can be downloaded here: [9]. The precompiled stan-
dalone version for Windows, Mac, or Linux operating systems can
be downloaded here: [13]. All steps necessary to install and run
CAT are documented in the user manual [14] and in the com-
plementary online help, which can be accessed directly via CAT’s
help functions. The CAT software is free but copyrighted and dis-
tributed under the terms of the GNU General Public License, as
published by the Free Software Foundation.

CAT can be started through SPM, from the MATLAB command
window, from a shell, or as a standalone version. Except when
called from the command shell (CAT is fully scriptable), a user
interface will appear (see Fig. 1), allowing easy access to all analy-
sis options and most additional functions. In addition, a graphical
output window will display the interactive help to get started. This
interactive help will be replaced by the results of the analyses (i.e.,
in that same window) but can always be called again via the user
interface.

Computational morphometry

CAT'’s processing pipeline (see Fig. 2) contains 2 main streams: (i)
voxel-based processing for voxel-based morphometry (VBM) and (ii)
surface-based processing for surface-based morphometry (SBM). The
formeris a prerequisite for the latter, but not the other way round.
Both processing streams can be extended to include additional
steps for (iii) region-based processing and region-based morphome-
try (RBM).

Voxel-based processing

Voxel-based processing steps can be roughly divided into a mod-
ule for tissue segmentation, followed by a module for spatial
registration.

® Tissue Segmentation: The process is initiated by applying a
spatially adaptive nonlocal means (SANLM) denoising filter [15],
followed by SPM’s standard unified segmentation [16]. The re-
sulting output serves as a starting point for further optimiza-
tions and CAT’s tissue segmentation steps: first, the brain
is parcellated into the left and right hemispheres, subcorti-
cal areas, ventricles, and cerebellum. In addition, local white
matter hyperintensities are detected (to be later accounted
for during the spatial registration and the optional surface
processing). Second, a local intensity transformation is per-
formed to reduce the effects of higher gray matter intensities
in the motor cortex, basal ganglia, and occipital lobe, which
are influenced by varying degrees of myelination. Third, an
adaptive maximum a posteriori (AMAP) segmentation is applied,
which does not require any a priori information on the tissue
probabilities [17]. The AMAP segmentation also includes a par-
tial volume estimation [18]. Figure 3A provides information on
the accuracy of CAT'’s tissue segmentation.

® Spatial Registration: Geodesic Shooting [24] is used to reg-
ister the individual tissue segments to standardized tem-
plates in the ICBM 2009c Nonlinear Asymmetric space
(MNI152NLin2009cAsym [25]), hereafter referred to as MNI
space. While MNI space is also used in many other software
packages, enabling cross-study comparisons, users may also
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Figure 2: Main processing streams. (A) Simplified pipeline: image processing in CAT can be separated into a mandatory voxel-based processing stream
and an optional subsequent surface-based processing stream. Each stream requires different templates and atlases and, in addition, tissue probability
maps for the voxel-based stream. The voxel-based stream consists of 2 main modules—for tissue segmentation and spatial registration—resulting in
spatially registered (and modulated) gray matter/white matter segments, which provides the basis for voxel-based morphometry (VBM). The
surface-based stream also consists of 2 main modules—for surface creation and registration—resulting in spatially registered surface maps, which
provide the basis for surface-based morphometry (SBM). Both streams also include an optional module each to analyze regions of interest (ROIs) resulting
in ROI-specific mean volumes (mean surface values, respectively). This provides the basis for region-based morphometry (RBM). (B) Detailed pipeline: to
illustrate the differences from SPM, the CAT pipeline is detailed with its individual processing steps. The SPM methods used are shown in blue and
italic font: images are first denoised by a spatially adaptive nonlocal means (SANLM) filter [15] and resampled to an isotropic voxel size. After applying
an initial bias correction to facilitate the affine registration, SPM’s unified segmentation [16] is used for the skull stripping and as a starting estimate
for the adaptive maximum a posteriori (AMAP) segmentation [17] with partial volume estimation (PVE) [18]. In addition, SPM’s segmentation is used to
locally correct image intensities. Finally, the outcomes of the AMAP segmentation are registered to the MNI template using SPM’s shooting registration.
The outcomes of the AMAP segmentation are also used to estimate cortical thickness and the central surface using a projection-based thickness (PBT)
method [19]. More specifically, after repairing topology defects [20], central, pial, and white matter surface meshes are generated. The individual left
and right central surfaces are then registered to the corresponding hemisphere of the FreeSurfer template using a 2D version of the DARTEL approach
[21]. In the final step, the pial and white matter surfaces are used to refine the initial cortical thickness estimate using the FreeSurfer thickness metric
[22,23].

choose to use their own templates. Figure 3B provides infor-
mation on the accuracy of CAT’s spatial registration.

Voxel-based morphometry (VBM)

VBM is applied to investigate the volume (or local amount) of a
specific tissue compartment [16, 26]—usually gray matter. VBM
incorporates different processing steps: (i) tissue segmentation

and (ii) spatial registration, as detailed above, and in addition,
(iil) adjustments for volume changes due to the registration (mod-
ulation) as well as (iv) convolution with a 3-dimensional (3D)
Gaussian kernel (spatial smoothing). As a side note, the modu-
lation step results in voxel-wise gray matter volumes that are the
same as in native space (i.e., before spatial registration) and not
corrected for brain size yet. To remove effects of brain size, users
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Figure 3: Evaluation of segmentation and registration accuracy. (A) Segmentation Accuracy: Most approaches for brain segmentation assume that each
voxel belongs to a particular tissue class, such as gray matter (GM), white matter (WM), or cerebrospinal fluid (CSF). However, the spatial resolution of brain
images is limited, leading to so-called partial volume effects (PVE) in voxels containing a mixture of different tissue types, such as GM/WM and GM/CSF.
As PVE approaches are highly susceptible to noise, we combined the PVE model [18] with a spatial adaptive nonlocal means denoising filter [15]. To
validate our method, we used a ground-truth image from the BrainWeb [31] database with varying noise levels of 1-9%. The segmentation accuracy for
all tissue types (GM, WM, CSF) was determined by calculating a kappa coefficient (a kappa coefficient of 1 means that there is perfect correspondence
between the segmentation result and the ground truth). Left panel: The effect of the PVE model and the denoising filter on the tissue segmentation at
the extremes of 1% and 9% noise. Right panel: The kappa coefficient over the range of different noise levels. Both panels demonstrate the advantage of
combining the PVE model with a spatial adaptive nonlocal means denoising filter, with particularly strong benefits for noisy data. (B) Registration
Accuracy: To ensure an appropriate overlap of corresponding anatomical regions across brains, high-dimensional nonlinear spatial registration is
required. CAT uses a sophisticated shooting approach [24], together with an average template created from the IXI dataset [32]. The figure shows the
improved accuracy (i.e., a more detailed average image) when spatially registering 555 brains using the so-called shooting registration and the Dartel
registration compared to the SPM standard registration. (C) Preprocessing Accuracy: We validated the performance of region-based morphometry (RBM) in
CAT by comparing measures derived from automatically extracted regions of interest (ROI) versus manually labeled ROIs. For the voxel-based analysis,
we used 56 structures, manually labeled in 40 brains that provided the basis for the LPBA40 atlas [33]. The gray matter volumes from those manually
labeled regions served as the ground truth against which the gray matter volumes calculated using CAT and the LPBA40 atlas were then compared.
For the surface-based analysis, we used 34 structures that were manually labeled in 39 brains according to Desikan et al. [34]. The mean cortical
thickness from those manually labeled regions served as the ground truth against which the mean cortical thickness calculated using CAT and the
Desikan atlas were compared. The diagrams show excellent overlap between manually and automatically labeled regions in both voxel-based (left)
and surface-based (right) analyses. (D) Consistency of Segmentation and Surface Creation: Data from the same brain were acquired on MRI scanners with
different isotropic spatial resolutions and different field strengths: 1.5T MPRAGE with a 1-mm voxel size, 3T MPRAGE with a 0.8-mm voxel size, and 7T
MP2RAGE with a 0.7-mm voxel size. Section Views: The left hemispheres depict the central (green), pial (blue), and white matter (red) surfaces; the right
hemispheres show the gray matter segments. Rendered Views: The color bar encodes point-wise cortical thickness projected onto the left hemisphere
central surface. Both section views and hemisphere renderings demonstrate the consistency of the outcomes of the segmentation and surface
creation procedures across different spatial resolutions and field strengths.
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Figure 4: Cortical Measurements: Surface-based morphometry is applied to investigate cortical surface features (i.e., cortical thickness and various
parameters of cortical folding) at thousands of surface points. Cortical Thickness: One of the best-known and most frequently used morphometric
measures is cortical thickness, which captures the width of the gray matter ribbon as the distance between its inner boundary (white matter surface)
and outer boundary (pial surface). Cortical Folding: CAT provides distinct cortical folding measures, derived from the geometry of the central surface:
“Gyrification” is calculated via the absolute mean curvature [35] of the central surface. “Sulcal Depth”is calculated as the distance from the central
surface to the enclosing hull [36]. “Cortical Complexity” is calculated using the fractal dimension of the central surface area from spherical harmonic
reconstructions [37]. Finally, “Surface Ratio” is calculated as the ratio between the area of the central surface contained in a sphere of a defined size

and that of a disk with the same radius [38].

have at least 2 options: (i) calculating the total intracranial volume
(TIV) and including TIV as a covariate in the statistical model [27]
or (ii) selecting “global scaling” (see second-level options in SPM).
The latter is recommended if TIV is linked with (i.e., not orthog-
onal to) the effect of interest (e.g., sex), which can be tested (see
“Design orthogonality” in SPM).

Surface-based processing

The optional surface-based processing comprises a series of steps
that can be roughly divided into a module for surface creation,
followed by a module for surface registration.

® Surface Creation: Fig. 3 illustrates the surface creation step
in CAT for data obtained on scanners with different field
strengths (1.5, 3.0, and 7.0 Tesla). CAT uses a projection-based
thickness method [19], which estimates the initial cortical
thickness and initial central surface in a combined step, while
handling partial volume information, sulcal blurring, and sul-
cal asymmetries, without explicit sulcus reconstruction. Af-
ter this initial step, topological defects (i.e., anatomically in-
correct connections between gyri or sulci) are repaired using
spherical harmonics [20]. The topological correction is fol-
lowed by a surface refinement, which results in the final cen-
tral, pial, and white surface meshes. In the last step, the fi-
nal pial and white matter surfaces are used to refine the ini-
tial cortical thickness estimate using the FreeSurfer thickness
metric [22, 23]. Alternatively, the final central surface can be
used to calculate metrics of cortical folding, as described un-
der “Surface-based morphometry (SBM).”

® Surface Registration: The resulting individual central sur-
faces are registered to the corresponding hemisphere of the
FreeSurfer FsAverage template [28]. During this process, the
individual central surfaces are spherically inflated with min-
imal distortions [29], and a one-to-one mapping between the
folding patterns of the individual and template spheres is cre-
ated by a 2-dimensional (2D) version of the DARTEL approach
[21, 30]. Figure 3D provides information on the accuracy of
CAT'’s surface registration.

Surface-based morphometry (SBM)

SBM can be used to investigate cortical thickness or various pa-
rameters of cortical folding. The measurement of “cortical thick-
ness” captures the width of the gray matter ribbon as the distance
between its inner and outer boundary at thousands of points (see
Fig. 4). To obtain measurements of “cortical folding,” the user has
a variety of options in CAT, ranging from Gyrification [35] to Sul-
cal Depth [36] to Cortical Complexity [37] to the Surface Ratio [38], as
explained and illustrated in Fig. 4. Similar to VBM, SBM incorpo-
rates a series of different steps: (i) surface creation and (i) sur-
face registration, as detailed above, and (iii) spatial smoothing. As
a side note, since the measurements in native space are mapped
directly to the template during the spatial registration, no addi-
tional modulation (as in VBM) is needed to preserve the individ-
ual differences. In contrast to VBM, SBM does not require brain
size corrections because cortical thickness and cortical folding are
not closely associated with total brain volume (unlike gray matter
volume) [39].

Region-based processing and morphometry

In addition to voxel- or point-wise analyses via VBM or SBM, CAT
provides an option to conduct regional analyses via region-based
morphometry (RBM). For this purpose, the processing steps under
voxel-based processing (surface-based processing, respectively)
should be applied and followed by automatically calculating re-
gional measurements. This is achieved by working with regions of
interest (ROIs), defined using standardized atlases. The required
atlases are provided in CAT (see Supplementary Table S1 and
Supplementary Table S2), but users can also work with their own
atlases.

® Voxel-based ROIs: The volumetric atlases available in CAT
have been defined on brain templates in MNI space and may
be mapped to the individual brains by using the spatial regis-
tration parameters determined during voxel-based process-
ing. Volumetric measures, such as regional gray matter vol-
ume, can then be calculated for each ROI in native space.
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® Surface-based ROIs: The surface atlases available in CAT are
supplied on the FsAverage surface and can be mapped to the
individual surfaces by using the spherical registration pa-
rameters determined during the surface-based processing.
Surface-based measures, such as cortical thickness or corti-
cal folding, are then calculated for each ROI in native space.

Performance of CAT

CAT allows processing streams to be distributed to multiple pro-
cessing cores, to reduce processing time. For example, CAT’s anal-
ysis of 50 subjects (see “Example application”), leveraging the in-
built parallel processing capabilities on 4 cores, required 7 hours
of processing time when analyzing 1 image per subject (cross-
sectional stream) and 18 hours when processing 3 images per sub-
ject (longitudinal stream) for the entire sample. Application of all
available workflows for a single T1-weighted image takes around
35 minutes, as timed on an iMac with Intel Core i7 with 4 GHz and
32 GB RAM using MATLAB version 2017b, SPM12 version 17771,
and CAT12.8 version r1945.

CAT’s performance has been thoroughly tested by evaluating
its accuracy, sensitivity, and robustness in comparison to other
tools frequently used in the neuroimaging community. For this
purpose, we applied CAT and analyzed real data (see “Example
application”) as well as simulated data generated from BrainWeb
[40]. The evaluation procedures are detailed in Supplementary
Note 1 and Supplementary Note 2; the outcomes are presented
in Supplementary Fig. S1 and Supplementary Fig. S2. CAT proved
to be accurate, sensitive, reliable, and robust, outperforming other
common neuroimaging tools.

Five selected features of CAT
Longitudinal processing

Aside from offering a standard pipeline for cross-sectional anal-
yses, CAT has specific longitudinal pipelines that ensure a local
comparability both across subjects and across time points within
subjects. Compared to the cross-sectional pipeline, these longi-
tudinal pipelines render analysis outcomes more accurate when
mapping structural changes over time. The user can choose be-
tween 3 different longitudinal pipelines: the first one for analyz-
ing brain plasticity (over days, weeks, months), the second one for
analyzing brain development (over months and years), and the
third one for brain aging (over months, years, decades). For more
details, refer to Supplementary Note 3.

Quality control

CAT introduces a retrospective quality control framework for
the empirical quantification of essential image parameters, such
as noise, intensity inhomogeneities, and image resolution (all of
these can be impacted, for example, by motion artifacts). Separate
parameter-specific ratings are provided as well as a handy overall
rating [41]. Moreover, image outliers can be easily identified, ei-
ther directly based on the aforementioned indicators of the image
quality or by calculating a z-score determined by the quality of the
image processing as well as by the anatomical characteristics of
each brain. For more details, refer to Supplementary Note 4.

Mapping onto the cortical surface

CAT allows the user to map voxel-based values (e.g., quantitative,
functional, or diffusion parameters) to individual brain surfaces
(i.e., pial, central, and/or white matter) for surface-based anal-
yses. The integrated equi-volume model [42] also considers the
shift of cytoarchitectonic layers caused by the local folding. Op-

tionally, CAT also allows mapping of voxel values at multiple posi-
tions along the surface normal at each node—supporting a layer-
specific analysis of ultra-high resolution functional MRI data [43,
44]. For more details, refer to Supplementary Note 5.

Threshold-free cluster enhancement (TFCE)

CAT comes with its own threshold-free cluster enhancement
(TFCE) toolbox and provides the option to apply TFCE [45] in any
statistical second-level analysis in SPM, for both voxel-based and
surface-based analyses. It can also be employed to analyze func-
tional MRI (fMRI) or diffusion tensor imaging (DTI) data. A particu-
larly helpful feature of the TFCE toolbox is that it automatically
recognizes exchangeability blocks and potential nuisance param-
eters [46] from an existing statistical design in SPM. For more de-
tails, refer to Supplementary Note 4.

Visualization

CAT allows a user to generate graphs and images, which creates
a solid basis to explore findings as well as to generate ready-to-
publish figures according to prevailing standards. More specifi-
cally, itincludes 2 distinct sets of tools to visualize results: the first
set prepares both voxel- and surface-based data for visualization
by providing options for thresholding the default SPM T-maps or
F-maps and for converting statistical parameters (e.g., T-maps and
F-maps into p-maps). The second set of tools visualizes the data
offering the user ample options to select from different brain tem-
plates, views, slices, significance parameters, significance thresh-
olds, color schemes, and so on (see Fig. 5).

Example application

To demonstrate an application of CAT, we investigated an actual
dataset focusing on the effects of Alzheimer’s disease on brain
structure. More specifically, we set out to compare 25 patients
with Alzheimer’s disease and 25 matched controls. We applied (i)
a VBM analysis focusing on voxel-wise gray matter volume, (ii)
an RBM analysis focusing on regional gray matter volume (i.e., a
voxel-based ROI analysis), (iii) a surface-based analysis focusing
on point-wise cortical thickness, and (iv) an RBM analysis focus-
ing on regional cortical thickness (i.e., a surface-based ROI analy-
sis). Given the wealth of literature on Alzheimer’s disease, we ex-
pected atrophy in gray matter volume and cortical thickness in
patients compared to controls, particularly in regions around the
medial temporal lobe and the default mode network [47, 48]. In
addition to distinguishing between the 4 morphological measures
(i-iv), all analyses were conducted using both cross-sectional and
longitudinal streams in CAT. Overall, we expected that longitu-
dinal changes would manifest in similar brain regions to cross-
sectional group differences but that cross-sectional effects would
be more pronounced than longitudinal effects. The outcomes of
this example analysis are presented and discussed in the next
section.

Discussion
Example application

As shown in Fig. 6, all 4 cross-sectional streams—investigating
voxel-based gray matter volume, regional gray matter vol-
ume, point-wise thickness, and regional thickness—revealed
widespread group differences between patients with Alzheimer’s
disease (AD) and matched controls. Overall, the effects were com-
parable between cross-sectional and longitudinal streams, but the
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A Results on Inflated Surface

B Results on Flatmap
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Figure 5: Examples of CAT’s visualization of results. Both surface- and voxel-based data can be presented on surfaces such as (A) the (inflated)
FsAverage surface or (B) the flatmap of the Connectome Workbench. Volumetric maps can also be displayed as (C) slice overlays on the MNI average
brain or (D) a maximum intensity projection (so-called glass brains). All panels show the corrected P values from the longitudinal VBM study in our

example (see “Example application”).

significant clusters were more pronounced cross-sectionally (note
the different thresholds cross-sectionally and longitudinally).

More specifically, using VBM, significantly smaller voxel-wise
gray matter volumes were observed in patients with AD compared
to controls, particularly in the medial and lateral temporal lobes
and within regions of the default mode network (Fig. 6A, top). Sim-
ilarly, the longitudinal follow-up revealed a significantly stronger
gray matter volume loss in patients compared to controls, with
effects located in the medial temporal lobe as well as the default
mode network (Fig. 6A, bottom). The voxel-based ROI analysis re-
sulted in a significance pattern similar to the VBM study, with
particularly pronounced group differences in the temporal lobe
that extended into additional brain areas, including those com-
prising the default mode network (Fig. 6B, top). Again, the longitu-
dinal analysis yielded similar but less pronounced findings than
the cross-sectional analysis, although longitudinal effects were
stronger than in the VBM analysis (Fig. 6B, bottom).

Using SBM, the point-wise cortical thickness analysis yielded a
pattern similar to the VBM analysis with significantly thinner cor-
tices in patients, particularly in the medial and lateral temporal
lobe and within regions of the default mode network (Fig. 6C, top).
Just as in the VBM analysis, significant clusters were widespread
and reached far into adjacent regions. Again, the results from the
longitudinal stream were less widespread and significant than the
results from the cross-sectional stream (Fig. 6C, bottom). Finally,
the surface-based ROI analysis largely replicated the local find-
ings from the SBM analysis (Fig. 6D, top/bottom).

Overall, the results of all analysis streams corroborate prior
findings in the Alzheimer’s disease literature, particularly the
strong disease effects within the medial temporal lobe and regions
of the default mode network [47, 48]. Furthermore, the compara-

ble pattern across measures suggests a considerable consistency
between available morphometric options, even if gray matter vol-
ume and cortical thickness are biologically different and not per-
fectly related [49, 50].

As shown in Supplementary Fig. S1 and Supplementary Fig. S2,
CAT12 proved to be accurate, sensitive, reliable, and robust, out-
performing other common neuroimaging tools. Similar conclu-
sions have been drawn in independent evaluations testing 1 or
more software in comparison with CAT12. For example, Guo et al.
[51] evaluated the repeatability and reproducibility of brain vol-
ume measurements using FreeSurfer, FSL-SIENAX, and SPM and
highlighted the reliability of CAT12. Similarly, CAT12 emerged as
a robust option when demonstrating that the choice of the pro-
cessing pipeline influences the location of neuroanatomical brain
markers [52]. Last but not least, Khlif et al. [53] compared the
outcomes of CAT12’s automated segmentation of the hippocam-
pus with those achieved based on manual tracing and demon-
strated that both approaches produced comparable hippocampal
volume.

In addition, numerous evaluations suggest that CAT12 per-
forms at least as well as other common neuroimaging tools and,
as such, offers a valuable alternative. For example, Tavares et al.
[54] conducted a VBM study and concluded that the segmentation
pipelines implemented in CAT12 and SPM12 provided results that
are highly correlated and that the choice of the pipeline had no
impact on the accuracy of any brain volume measure. Along the
same lines, but for SBM, Ay et al. [55] reported that CAT12 and
FreeSurfer produced equally valid results for parcel-based cor-
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A Cross-sectional and longitudinal VBM analysis
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B Cross-sectional and longitudinal volume ROI analysis
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Figure 6: Pronounced atrophy in gray matter and cortical thickness in patients with Alzheimer’s disease compared to healthy control subjects. (A)
Voxel-based morphometry (VBM) findings: Results were estimated using threshold-free cluster enhancement (TFCE), corrected for multiple comparisons by
controlling the family-wise error (FWE), and thresholded at P < 0.001 for cross-sectional data and P < 0.05 for longitudinal data. Significant findings were
projected onto orthogonal sections intersecting at (x = —27 mm, y = —10 mm, z = —19 mm) of the mean brain created from the entire study sample
(n = 50). (B) Volumetric regions of interest (ROI) findings: ROIs were defined using the Neuromorphometrics atlas. Results were corrected for multiple
comparisons by controlling the false discovery rate (FDR) and thresholded at q < 0.001 for cross-sectional data and q < 0.05 for longitudinal data.
Significant findings were projected onto the same orthogonal sections as for the VBM findings. (C) Surface-based morphometry (SBM) findings: Results
were estimated using TFCE, FWE-corrected, and thresholded at P < 0.001 for cross-sectional data and P < 0.05 for longitudinal data. Significant findings
were projected onto the FreeSurfer FsAverage surface. (D) Surface ROI findings: ROIs were defined using the DK40 atlas. Results were FDR-corrected
and thresholded at q < 0.001 for cross-sectional data and q < 0.05 for longitudinal data. Significant findings were projected onto the FsAverage surface.

tical thickness calculations. de Fatima Machado Dias et al. [56]
addressed the issue of reproducibility and observed that cortical
thickness measures using CAT12 and FreeSurfer were compara-
ble at the individual level. Moreover, Seiger et al. [57] conducted
a study in patients with Alzheimer’s disease and healthy con-
trols, in which CAT12 and FreeSurfer provided consistent cortical
thickness estimates and excellent test-retest variability scores.
Velazquez et al. [58] supported these findings when comparing
CAT12 and FreeSurfer with 3 voxel-based methods in a test-
retest analysis and clinical application. Finally, Righart et al. [59]
compared volume and surface-based cortical thickness measure-
ments in multiple sclerosis and emphasized CAT12’s consistent
performance.

These collective findings from multiple studies support the no-
tion that CAT is a robust and reliable tool for both VBM and SBM
analyses, producing results that are comparable to and, in some
cases, superior to other established neuroimaging software.

CAT is suitable for desktop and laptop computers as well as high-
performance clusters. It is fully integrated into the SPM environ-
ment within MATLAB but also allows process execution directly
from the command shell, without having to start SPM. CAT can
also run without a MATLAB license by using the stand-alone ver-
sion or by using Octave instead of MATLAB. In terms of perfor-
mance, CAT allows for ultra-fast processing and analysis and also
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is more sensitive in detecting significant effects compared to other
common tools used by the neuroimaging community. Moreover, it
better handles varying levels of noise and signal inhomogeneities.
Furthermore, CAT is easy to integrate with non-SPM software
packages and also supports the Brain Imaging Data Structure
(BIDS) standards [60]. Therefore, CAT is ideally suited to process
not only small datasets (as demonstrated in the example applica-
tion) but also big datasets, such as samples of the UK Biobank [61]
or ENIGMA [62]. Finally, while CAT is currently targeted at struc-
tural imaging data, some features (e.g., high-dimensional spatial
registration or mapping onto the cortical surface) may also be
used for the analysis of functional, diffusion, or quantitative MRI
or EEG/MEG data.

Methods

Application example
Data source

Data for the application example were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
[63]. The ADNI (RRID:SCR_003007) was launched in 2003 as a
public—private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impair-
ment (MCI) and early AD. For up-to-date information, see [64].

Sample characteristics

For the purpose of the current study, we compiled a sample of
50 subjects with 3D T1-weighted structural brain images from
the ADNI database. Specifically, we randomly selected the first
25 subjects (16 males/9 females) classified as patients with AD
(mean age 75.74 + 8.14 years; mean Minimal Mental Status Ex-
amination [MMSE] score: 23.44 + 2.04) and matched them for sex
and age with 25 healthy controls (mean age 76.29 + 3.90 years;
mean MMSE: 28.96 + 1.24). Informed consent was obtained from
all research participants. All subjects had brain scans at baseline
(first scan at enrollment) and at 2 follow-up visits, at 1 year and
2 years after the first scan. All brain images were acquired on 1.5
Tesla scanners (Siemens, General Electric, Philips) using a 3D T1-
weighted sequence with an in-plane resolution between 0.94 and
1.25 mm and a slice thickness of 1.2 mm.

Data processing

All T1-weighted data were processed using CAT12 following the
cross-sectional (or longitudinal, respectively) processing stream
for VBM, SBM (cortical thickness), and ROI analyses (see Fig. 2) ac-
cording to the descriptions provided under “Computational mor-
phometry.” For each subject, only their first time point was in-
cluded in the cross-sectional stream, whereas all 3 time points
were included in the longitudinal stream. The processing streams
for the VBM analysis resulted in modulated and registered gray
matter segments, which were smoothed using a 6-mm Gaussian
kernel. The image-processing streams for the SBM analysis re-
sulted in the registered point-wise cortical thickness measures,
which were smoothed using a 12-mm Gaussian kernel. The voxel-
based ROI analysis used the Neuromorphometrics atlas (RRID:
SCR_005656) [65] to calculate the regional gray matter volumes;
the surface-based ROI analysis employed the DK40 atlas [34] to
calculate regional cortical thickness.
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Statistical analysis

For each variable of interest—voxel-wise gray matter volume, re-
gional gray matter volume, point-wise cortical thickness, and re-
gional cortical thickness—the dependent measures (e.g., the regis-
tered, modulated, and smoothed gray matter segments for voxel-
wise gray matter) were entered into the statistical model. For the
cross-sectional stream, group (patients with AD vs. controls) was
defined as the independent variable. For the longitudinal stream,
the interaction between group and time was defined as the inde-
pendent variable, whereas subject was defined as a variable of no
interest. For the VBM and the voxel-based ROI analyses, data were
corrected for TIV using “global scaling” (because TIV correlated
with group, the effect of interest). Since cortical thickness does
not scale with brain size [39], no corrections for TIV were applied
for the SBM and the surface-based ROI analyses. For the cross-
sectional analysis, we additionally included age as a nuisance
parameter.

For the VBM and SBM analyses, results were corrected for
multiple comparisons by applying TFCE [45] and controlling the
family-wise error at P < 0.001 (cross-sectional) and P < 0.05 (longi-
tudinal). For the voxel-based and surface-based ROI analyses, re-
sults were corrected for multiple comparisons by controlling the
false discovery rate [66] at q < 0.001 (cross-sectional) and q < 0.05
(longitudinal). All statistical tests were 1-tailed given our a priori
hypothesis that patients with AD have less gray matter at baseline
and a larger loss of gray matter over time.

The outcomes of the VBM and voxel-based ROI analyses were
overlaid onto orthogonal sections of the average brain that was
created from the spatially registered T1-weighted images of the
study sample (n = 50); the outcomes of the SBM and surface-based
ROI analyses were projected onto the FsAverage surface.

Source Code Availability and Requirements

Project name: Computational Anatomy Toolbox

Project homepage: [9, 69]

Software documentation: [14]

Operating system(s): Platform independent (MacOS, Linux,
Windows)

Programming language: MATLAB, C

Other requirements: MATLAB (7.4 or newer)

License: GPL 2.0

RRID:SCR_019184

Additional Files

Supplementary Note 1. Comparison with other tools.
Supplementary Note 2. Evaluation with simulated data.
Supplementary Note 3. Longitudinal processing.
Supplementary Note 4. Quality control.

Supplementary Note 5. Mapping onto the cortical surface.
Supplementary Note 6. Threshold-free cluster enhancement
(TECE).

Supplementary Note 7. Customized methods for clinical data.
Supplementary Fig. S1. Comparisons between CAT12 and other
common tools. Here we compared the baseline gray matter im-
ages of 25 patients with Alzheimer’s disease and 25 matched con-
trols. (a) VBM analyses of voxel-wise gray matter volume using
FSL-FAST6 (top), SPM12-Shooting (middle), and CAT12 (bottom).
(b) SBM analyses of point-wise cortical thickness using CIVET2.1
(top), Freesurfer7.2 (middle), and CAT12 (bottom). (c, d) Sensitivity
of VBM and SBM analyses. The effect sizes (Cohen’s d) are shown
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on the x-axis; their frequency is shown on the y-axis (occurrence
is normalized to 1 to facilitate comparisons between histograms).
For both VBM and SBM, CAT12 demonstrates a larger sensitivity
in detecting structural differences. This is reflected in the more
extended significance clusters and lower P values (panels a and b)
as well as larger effect sizes (panels c and d).

Supplementary Fig. S2. Evaluation of CAT12 and other common
tools using Brainweb data. Higher kappa values correspond to
a better overlap, larger reliability, and increased robustness. (a)
Overlap between ground truth and segmentation outputs for dif-
ferent noise levels. CAT12 is similar to FSL-FAST6 at lower noise
levels but clearly outperforms both SPM12 and FSL-FAST6 at
higher noise levels. The latter is due to the implemented denois-
ing step (see also Fig. 3A for the effect of denoising). (b) Overlap
between ground truth and segmentation outputs for different sig-
nal inhomogeneities. CAT12 is extremely robust across the entire
range of intensity nonuniformity; it outperforms both SPM12 and
FSL-FAST6.

Supplementary Fig. S3. Comparison between CAT12’s cross-
sectional and longitudinal pipelines. Here we compared the lon-
gitudinal gray matter images of 25 patients with Alzheimer’s dis-
ease and 25 matched controls. Voxel-based morphometry (VBM)
results are shown on the left and surface-based morphometry
(SBM) results on the right. For both VBM and SBM, the longitu-
dinal preprocessing leads to an increased sensitivity compared
to cross-sectional processing, which is evident as larger clusters
and lower P values (panels a and b) as well as larger effect sizes
(panels c and d). The effect sizes are captured as Cohen’s d on
the x-axis with the frequency of its occurrence normalized to a
total sum of 1 (to ease comparisons between histograms) on the
y-axis.

Supplementary Fig. S4. CAT12's longitudinal processing work-
flows to examine (a) neuroplasticity, (b) aging, and (c) neurodevel-
opment. The first step in all 3 workflows is the creation of a high-
quality average image over all time points. For this purpose, CAT12
realigns the images from all time points for each participant us-
ing inverse-consistent (or symmetric) rigid-body registrations and
intrasubject bias field correction. While this is sufficient to cre-
ate the required average image for the neuroplasticity and aging
workflows, the neurodevelopmental workflow requires nonlinear
registrations in addition. In either case, the resulting average im-
age is segmented using CAT12’s regular processing workflow to
create a subject-specific tissue probability map (TPM). This TPM is
used to enhance the time point-specific processing to create the
final segmentations. The final tissue segments are then registered
to MNI space to obtain a voxel comparability across time points
and subjects, which differs between all 3 workflows. In the neu-
roplasticity workflow, an average of the time point-specific regis-
trations is created to transform the tissue segments of all time
points to MNI space. The aging workflow does the same in princi-
ple but adds additional (very smooth) deformations between the
individual images across time points to account for inevitable age-
related changes over time (e.g., enlargements of the ventricles).
In contrast, the neurodevelopmental workflow needs to account
for major changes, such as overall head and brain growth, which
requires independent nonlinear registrations to MNI space of all
images across time points (which are obtained using the default
cross-sectional registration model).

Supplementary Fig. S5. Subject-specific quality control. Individ-
ual quality ratings for each scan are helpful for determining
potential problems and issues for the use of single scans. The “Im-
age Quality Ratings” (top) employ measures of noise, bias, and im-
age resolution to generate a summary grade for each image [41].

»

A “CAT Processing Report” (left) is automatically saved for each
image after the processing workflow is completed; it provides in-
formation on image quality measures and the overall grade, in
addition to visualizations, which allow for an easy assessment
of the quality of the skull stripping, tissue segmentation, and
surface mapping. Moreover, a “Longitudinal Report” (right) is au-
tomatically saved when any of the longitudinal pipelines have
been used (see Supplementary Note 3). This longitudinal report—
considering all images of 1 brain across all time points—provides
the same information as the standard cross-sectional report but
focuses on the assessment of differences between the individual
time points.

Supplementary Fig. S6. Group-specific quality control. In addi-
tion to the subject-specific quality control, larger studies in par-
ticular might benefit from scrutinizing those images that are ei-
ther low in their individual quality ratings and/or different from
the other images, suggesting anatomic anomalies, imperfect pro-
cessing, or other issues that might hamper the subsequent sta-
tistical analysis. The “Group Boxplot” (left) allows one to com-
pare any image based on their similarity to the mean and re-
flects the homogeneity of the sample, by calculating the average
z-score of all spatially registered images (or surface parameter
files). Lower average z-score values indicate that the data points
are more similar to the mean. Outliers (i.e., images with high z-
score values) indicate either a potential problem (with the im-
age per se or with the outcomes of the image processing) or sim-
ply a variation in the neuroanatomy (e.g., enlarged ventricles).
Such outliers should be checked carefully. An additional “IQR x
Mean Z-Score Window” (right) compares the average z-scores with
the weighted image quality rating (IQR) for each subject and al-
lows a combined view of sample homogeneity and overall image
quality.

Supplementary Fig. S7. Volume mapping. CAT12 offers multiple
ways to map voxel values onto the surface. The default mapping
extracts voxel values at multiple positions along a surface nor-
mal between the white matter surface and the pial surface. The
exact location of these positions along the normal is determined
by an equi-volumetric model [42], which reflects the shift of corti-
cal layers caused by local folding. However, voxel values can also
be extracted at a specific user-defined displacement (in mm) from
any given surface location.

Supplementary Table S1. Voxel-based ROI atlases available in
CAT12 (as of October 2023).

Supplementary Table S2. Surface-based ROI atlases available in
CAT12 (as of October 2023).

Abbreviations

AD: Alzheimer’s disease; AMAP: adaptive maximum a posteri-
ori; BIDS: Brain Imaging Data Structure; CAT: Computational
Anatomy Toolbox; CSF: cerebrospinal fluid; DTI: diffusion ten-
sor imaging; EEG: electroencephalography; FDR: false discovery
rate; MRI: functional magnetic resonance imaging; FWE: family-
wise error; FWHM: full width at half maximum; GM: gray matter;
IQR: image quality rating; MEG: magnetoencephalography; MMSE:
Minimal Mental Status Examination; MNI: Montreal Neurologi-
cal Institute; MPRAGE: Magnetization Prepared Rapid Acquisition
Gradient Echo; MP2RAGE: Magnetization Prepared 2 Rapid Acqui-
sition Gradient Echoes; MRI: magnetic resonance imaging; PBT:
projection-based thickness; PVE: partial volume estimation; RBM:
region-based morphometry; ROI: region of interest; SANLM: spa-
tially adaptive nonlocal means; SBM: surface-based morphom-
etry; SLC: stroke lesion correction; SPM: statistical parametric
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mapping; TFCE: threshold-free cluster enhancement; TIV: total in-
tracranial volume; TPM: tissue probability map; VBM: voxel-based
morphometry; WM: white matter; WMH: white matter hyperin-
tensity; WMHC: white matter hyperintensity correction.
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