
GigaScience , 2025, 14 , 1–16 

DOI: 10.1093/gigascience/giaf146 

Advance access publication date: 29 November 2025 

Technical note 

Segmentation-based quality control of structural MRI 

using the CAT12 toolbox 

Robert Dahnke 1 ,2 ,3 , * , Polona Kalc 1 ,2 , Gabriel Ziegler 4 , Julian Grosskreutz 5 , and Christian Gaser 1 ,2 ,3 

1 Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07747, Germany 
2 Department of Neurology, Jena University Hospital, Jena 07747, Germany 
3 German Center for Mental Health (DZPG), Jena-Halle-Magdeburg 07743, Germany 
4 University Hospital Magdeburg and DZNE Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg 39120, Germany 
5 Department of Neurology, University of Lübeck, Lübeck 23538, Germany 
∗Correspondence address. Robert Dahnke, Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena 07747, Germany. E-mail: 
robert.dahnke@uni-jena.de 

Abstract 

Background: The processing and analysis of magnetic resonance images is highly dependent on the quality of the input data, and 

systematic differences in quality can consequently lead to loss of sensitivity or biased results. However, varying image properties 
due to different scanners and acquisition protocols, as well as subject-specific image interferences, such as motion artifacts, can be 
incorporated in the analysis. A reliable assessment of image quality is therefore essential to identify critical outliers that may bias 
results. 

Findings: Here, we present a quality assessment for structural (T1-weighted) images using tissue classification in the SPM/CAT12 
ecosystem. We introduce multiple useful image quality measures, standardize them into quality scales, and combine them into an 

integrated structural image quality rating to facilitate the interpretation and fast identification of outliers with (motion) artifacts. The 
reliability and robustness of the measures are evaluated using synthetic and real datasets. Our study results demonstrate that the 
proposed measures are robust to simulated segmentation problems and variables of interest, such as cortical atrophy, age, sex, brain 

size, and severe disease-related changes, and might facilitate the separation of motion artifacts based on within-protocol deviations. 

Conclusion: The quality control framework presents a simple but powerful tool for the use in research and clinical settings. 

Keywords: MRI, brain, quality control, quality assessment, segmentation, motion artifacts 
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Background 

Multicenter magnetic resonance imaging (MRI) studies and data- 
sharing projects have become increasingly common in cognitive 
and clinical neuroscience in recent years. The collaboration of 
several imaging centers, allowing for increased statistical power 
through larger sample sizes, is especially beneficial for investigat- 
ing rare diseases and individual differences [ 1–3 ]. However, project 
deviations from the initial research plans (e.g., switching from 

functional to a structural imaging focus), differences and changes 
of imaging hardware and software, quality assurance procedures, 
and the resulting image quality variations may introduce bias in 

subsequent image processing and statistical analysis [ 4–7 ]. In par- 
ticular, the presence of noise, (motion) artifacts, inhomogeneity, 
or reduced resolution could affect image processing, even when 

such interferences are modeled and partially corrected during 
data processing [ 8–10 ] (Fig. 1 ). 

Typically, manual quality control (QC) checks each image for 
scan-specific interferences (e.g., motion artifacts) by visual in- 
spection to remove outliers [ 6 , 11 , 12 ]. However, manual assess- 
ment is time-consuming, highly subjective, and typically relies 
on project-specific definitions [ 9 ]. To make this process more ef- 
ficient and reliable, automated quality control approaches have 
been proposed for structural [ 5 , 13 , 14 ], functional (e.g., [ 15 ]), and 

diffusion imaging (e.g., [ 16 ]). In addition, the image quality esti- 
mates can be used to harmonize imaging data [ 17–19 ]. A system- 
b
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tic overview of different QC frameworks has been provided by
 20 ]. 

In this study, we propose a powerful and easily applicable
C framework for structural (T1-weighted) MRI data within the 
PM/CAT12 framework. Earlier versions have been extensively 
valuated in [ 21 ] and [ 22 ]. The proposed QC framework intro-
uces, standardizes, and integrates different quality metrics into 
 continuous structural image quality rating (SIQR). It supports 
oth automatic and interactive assessments of a preprocessed 

RI scan’s suitability for prospective use, as well as the identi-
cation of potential outliers within a sample, ensuring unbiased 

ata analysis. All measures and tools are part of the Computa-
ional Anatomy Toolbox (CAT) [ 23–25 ] of the Statistical Parametric
apping (SPM) [ 26–28 ] software and also available as a standalone

ersion [ 29 ]. All additional supporting data are available in the Gi-
aScience repository, GigaDB [ 30 ]. 

indings 

ere we present the rationale for a segmentation-based QC 

ramework, a definition of several quality measures, their stan- 
ardization into quality scales, and the integrated composite mea- 
ure, SIQR. We further describe the detection of imaging artifacts
ased on the within-sample quality and introduce the interactive 
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Figure 1: (A) Image properties such as noise, inhomogeneity, and resolution influence the segmentation accuracy. (B) The segmentation accuracy can 
be quantified by the κ similarity statistic [ 31 ], here presented for 2 segmentation approaches on simulated images [ 8 ], where larger levels of noise, 
inhomogeneity, or lower resolutions result in a worse overlap with the full-resolution image without interferences. (C) An illustration in real data with 
reduced anatomical details in a FLASH protocol [ 32 ] or (D) in case of movement artifacts (MR-ART sub-988484 from [ 9 ]). 

Figure 2: (A) Due to several different background types in real samples, 
only the brain tissues (excluding the background) were used for the 
evaluation of image quality. (B) To avoid side effects from age-related 
changes in volume and structure, the tissue segmentation is optimized 
to avoid tissue boundaries and perivascular spaces by morphological 
operations and masking. 
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utlier detection. Finally, we evaluate the proposed measures us-
ng simulated and real MRI data. 

egmentation-based image quality assessment 
or practical reasons, our QC framework uses the raw NIFTI for-
at rather than the original DICOM format, as NIFTI images are
ore commonly available in public datasets and are more often

sed as input in data-processing tools [ 2 ]. The QC framework re-
ies on an existing conventional or deep learning–based classifi-
ation of brain tissues, which is usually a prerequisite for subse-
uent brain image analyses (e.g., [ 25 , 33–35 ]). All proposed mea-
ures are based on image properties primarily within the brain
ecause the background might be affected by anonymization,
oise, or artifacts that do not necessarily affect the brain itself

Fig. 2 A) [ 6 , 36 ]. The quality measures are optimized to avoid the
valuation within parts of the brain that are typically affected by
ging-related tissue changes, such as white matter hyperintensi-
ies, small vessel disease, and perivascular spaces (Fig. 2 B). Within
he CAT12 toolbox, the QC is the final step of the preprocessing
nd extends the processing time of a subject by only a few sec-
nds. Alternatively, it can be run separately as an SPM batch for a
reexisting tissue segmentation (e.g., by SPM). 

The primary conceptualization and evaluation of our proposed
C measures is based on the Brain Web Phantom (BWP) [ 8 ], a sim-
lated MRI dataset, which presents a well-established standard
or developing and comparing processing methods. The dataset
ncludes images with varying levels of noise, inhomogeneities, and
esolution. These image properties affect the segmentation accu-
acy of MRI processing algorithms (Fig. 1 B) and are therefore use-
ul indicators of the quality of input data. 

uality measures 

s our measures have been optimized for use in cognitive and
linical neuroscience studies, the presentation is focused on prac-
icality. A full (technical) description can be found in the Meth-
ds section. For intensity-based measures, we use measure-to-
ontrast ratios instead of contrast-to-measure ratios. This ap-
roach ensures that the ratings follow a linear scale rather than a

ogarithmic one, as defined by the BWP. For a comparison to tradi-
ional contrast-to-measure ratio, please see the Methods section.

Several key quality metrics are considered: 

� Noise-to-contrast ratio (NCR): This metric estimates image
noise by calculating the lowest average local standard devia-
tion of voxel intensities in the bias-corrected image. It is as-
sessed within optimized cerebrospinal fluid (CSF) and white
matter (WM) regions and is highly sensitive for other high-
frequency artifacts such as motion. 

� Inhomogeneity-to-contrast ratio (ICR): This measure evalu-
ates intensity variations across the image by calculating the
global standard deviation of smoothed intensities within the
optimized WM segment. 

� Resolution score (RES): To account for distortions due to
anisotropic resolution, this score is directly computed using
the root mean square (RMS) equation. 

� Edge-to-contrast ratio (ECR): Since resampling or smoothing
can degrade voxel resolution, we suggest an additional mea-
sure that captures the average slope of intensity changes at
the gray matter (GM)/WM boundary. This helps assess the
sharpness of tissue interfaces. 

� Full-brain Euler characteristic (FEC): This metric quantifies
the topological integrity of the WM brain interface, helping
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Figure 3: Quality rating system: the percentage, numerical, and character grades were scaled on the basis of the BWP, which represents a standard for 
evaluation of image-processing methods. It should be noted that excellent ratings are reserved for images with exceptional quality, whereas typical 
scientific data generally receive “only” good assessments. 
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to detect potential distortions caused by noise and (motion) 
artifacts. 

These measures provide a comprehensive assessment of struc- 
tural MRI image quality, ensuring that intensity-based distortions, 
resolution issues, and structural inconsistencies that are relevant 
for the brain tissue segmentation, thickness estimation, and sur- 
face reconstruction are identified and accounted for. 

Standardization of measures 

Standardization into a normative range can enable simpler com- 
parison across studies and support easier interpretations. To 
accommodate various international rating systems, we have 
adopted a linear percentage and a corresponding (alpha-)numeric 
scaling (Fig. 3 , QRpercentage = 105–QRgrade ∗ 10, QRgrade = (105 –
QRpercentage )/10). The quality rating ranges from 0.5 (100 rating 
points [rps]; grade A+ ) to 10.5 (0 rps; grade F) for highest and low- 
est image quality, respectively. Numerical values provide a spe- 
cific rating, whereas letters describe quality ranges (e.g., grade A 

describes values between 90 and 100 rps). Scaling of the quality 
measures was performed using half of the BWP dataset, while 
the other half was used for evaluation (see “Evaluation concept 
and data”). Although the BWP does not include the simulation of 
motion artifacts, these are in general comparable to an increase 
of noise in the BWP dataset by 2 percentage points, as demon- 
strated in the Result section. In our QC measures, this roughly 
corresponds to an increase of + 1 grade or −10 rps compared to 
motion-free data. For improved (human) readability, we standard- 
ized all measures by applying a simple linear scaling function 

Q Rgrade = max 
(
. 5 , min 

(
10 . 5 ,

(
QMgrade − WQ Mgrade 

)
/ 

(
BQ Mgrade − WQ Mgrade 

) ∗ 6 + . 5 
))

(1) 

to transform the original quality measure (QM) into a quality 
rating (QR), with BQM as the best (95 rps, grade 1) and WQM (45 
rps, grade 5) as the worst regular value. 

Integrated structural image quality rating 

The SIQR is defined using an exponentially weighted average of 
multiple quality scores QRgrade (see Equation 2 ). This single com- 
posite score integrates various aspects of image quality, providing 
a robust metric for assessing structural image quality and identi- 
fying potential outliers. We excluded the ICR from the composite 
SIQR measure because most preprocessing methods can handle 
bias quite well, and the effects of signal intensity changes are al- 
ready considered by the NCR. Integrating the ICR was therefore 
contraintuitive, as high field strength resulted in worse ratings 
that did not fit to the outcome. 

SIQR =
(
mean 

(
[ NCR , RES , ECR , FEC ] 4 

))(1 / 4) 
(2) 
To balance the sensitivity to different quality measures while 
nsuring that the necessary quality conditions are met, we ap-
ly an exponentially weighted averaging approach to the graded 

uality ratings (range 0.5–10.5)—similar to the RMS but using the
ourth power and fourth root. This method allows well-rated im-
ges to contribute positively without overshadowing critical qual- 
ty constraints. For more information regarding the weighting- 
election process, we direct the reader to the Methods section. 

ample normalization for outlier detection 

o far, each image has been evaluated individually, enabling the
etection of outliers with very low resolution or high noise (e.g.,
hose falling below a C rating, such as SIQR < 70 rps). However,
o identify more subtle issues, such as mild motion artifacts, it
s necessary to assess deviations from the ideal quality expected
or a given MRI protocol within a specific sample. To achieve this,
e estimate the upper quartile of the SIQR percentage scores

rom images acquired with the same protocol and apply a lin-
ar correction (a simple translation, as the values have already
een scaled according to the BWP). This normalization results in
 standardized SIQR, where values close to zero indicate optimal
rotocol quality, while higher values highlight potential outliers.
o establish a general threshold for detecting quality issues, we
mployed a receiver operating characteristic (ROC) curve analysis 
ombined with 2-fold cross-validation (splitting the dataset into 
dd- and even-numbered files based on filenames). This approach 

as validated using test samples with expert ratings, ensuring ro-
ust performance in identifying suboptimal images. The normal- 

zed scores were processed using the “Check Sample Homogene- 
ty” tool (described in the next section) and saved as a normalized
IQR (nSIQR) score in the subject’s XML file and in a CSV table. 

oftware 

he “Check Sample Homogeneity” tool (Fig. 4 ) in the CAT12 tool-
ox supports a guided analysis of large datasets to detect and
xclude outliers in anatomy, preprocessing, and image quality 
rom analysis by estimating a sample-specific z -score. The tool 
as been designed in an interactive format with the intention to
ncourage users to get in touch with their data and carefully de-
ide on the inclusion/exclusion of the images from analyses. Arti-
acts can result in a systematic bias, often resulting in an under-
stimation of GM [ 7 ]. To ensure the validity of statistical analyses,
t is suggested that severe image quality-related outliers are ex- 
luded based on normative assessments provided by the toolbox.
he quality estimation is also available as the “Image Quality Es-
imation” SPM batch to process selected structural scans with a 
tting brain tissue segmentation (e.g., from SPM). The results for
ach input image are stored in an XML file and can be used for
ubsequent analysis steps and potential analysis in relation to ef-
ects of interest of a study (such as age). 
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Figure 4: The “Check Sample Homogeneity” Tool in CAT12 for the MR-ART dataset grouped by the amount of motion (see D and E). (A) In the main 
window, the user can select scans that are ready for analysis. The QC ratings, generated independently during preprocessing, are automatically loaded 
from the corresponding XML files. Users can interactively explore data points to investigate deviating ratings by viewing the original image with its 
segmentation overlay (B) or the preprocessing report (C) to remove outliers with image- and processing-related problems or atypical anatomical 
features. Grouping of multiple scans allows the estimation of a sample-specific nSIQR score and z -scores that are added to the individual XML files 
and stored as a CSV table. The normalization utilizes a scanning site variable to subtract the default protocol quality (defined by the upper quantile), 
highlighting scans with motion artifacts as outliers (E; see also Fig. 6 C, D). 
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valuation concept and data 

he calibration and testing of our proposed measures were done
sing simulated images from BWP [ 8 , 37 , 38 ] and the Cortical Ag-

ng Phantom (CAP) [ 39 ], as well as real data from IXI, ATLAS [ 40 ],
R-ART [ 9 ], and a test–retest dataset (Table 1 ). 
The BWP dataset consists of simulated data files of varying

oise, inhomogeneities, and resolution parameters, which are
ncoded in the filenames. To create balanced and comprehensive
alibration and testing samples containing similar—but not
dentical—cases, every second data point was assigned alter-
ately to each sample. The BWP calibration data consisted of all
dd files (ordered by filename) and were used to scale the quality
easures and estimate the weighted averaging described above.

he test subset (even files) was used to quantify the relationship
etween quality ratings and segmentation accuracy. Moreover,
e used the BWP to further simulate typical brain extraction
nd segmentation artifacts (e.g., by erosion/dilation of tissue
egments) to test the robustness of the quality measures in case
f critical data conditions (see Fig. 5 ). The CAP described in [ 39 ]
as used to test the effects of brain atrophy of up to 1 mm on
ur quality measures. 

Although simulated data enable basic evaluation under de-
ned conditions, real data are essential to investigate possi-
le dependencies/biases. The measures were quantified in IXI,
DHD200, and ATLAS datasets to test for possible effects of age,
ex, and lesions. Finally, the MR-ART dataset with 148 subjects,
ach with 3 scans without light, with light, and with severe mo-
ion artifacts, along with available expert ratings as well as MRIQC
erivatives [ 13 ], was used to test the utility of our measures to sep-
rate images with motion artifacts and to validate the measures
gainst an established QC framework. 

Additionally, we used the Tohoku test–retest (TRT) dataset,
hich contains 126 T1-weighted scans [ 41 ]. All scans were pre-
rocessed, registered, and resliced to a high-resolution template
ith 0.50 mm isotropic resolution. A median template was used

o remove outliers and to create the final ground-truth segmenta-
 <  
ion by averaging. Finally, we estimated the association of image
uality and scan time. 

All evaluation scripts are available in the CAT distribution on
itHub and require MATLAB with the statistical toolbox and curve
tting toolbox to run. The required raw data of IXI, CAP, ADHD200,
TLAS, and MR-ART are available from the project-specific web-
ites, as described in Table 1 . The preprocessed data and the re-
rganized images of the BWP(E) and the TRT are available on the
igaScience repository, GigaDB [ 30 ]. 

esults 

he quality scores were first evaluated on the simulated test data
o determine the accuracy of interference quantification and to
nvestigate how robust the measures are in cases of simulated
egmentation problems and aging. Furthermore, we used the IXI,
DHD200, and ATLAS datasets to study the effects of aging, sex,
rain size, and stroke lesion on our proposed measures of im-
ge quality. Additionally, we evaluated the ability to detect images
ith motion artifacts on the MR-ART dataset, tested the validity
f our measures against the MRIQC 0.16.1 derivatives, and demon-
trated the application in a test–retest scenario. All measures had
een standardized (see Fig. 3 ) and evaluated on the BWP before fo-
using on the averaged SIQR score. Of note, obvious subject/scan-
pecific motion artifacts generally increase the scans’ rating for
bout 1 grade, which corresponds to a decrease of 10 rps (and + 0.5
rade/ −5 rps for light artifacts), in comparison to the typical rating
chieved by most scans of the same protocol (see Fig. 7 ). Similar
o the Methods section, we focus here on the results pertaining to
IQR and refer the interested reader to the Methods section for a
ore detailed overview. 

imulated data 

he evaluation on the BWP test dataset showed that most qual-
ty ratings have a very high correlation (Spearman’s ρ > .950, P
 0.001) with their corresponding perturbation and a very low
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Table 1: Short overview of the used datasets 

Dataset N Age (years)] Sex (% men) Sites Description 

BWP 600 ∼30 100% 1 Simulated dataset [ 8 , 42 ] for basic definition (calibration: odd 
files) and evaluation (test: even files) of the quality ratings, 
with 5 levels of noise (1% to 9%), 3 different bias fields with 5 
levels (20% to 100%), and 8 resolution levels with a voxel 
length of 1 and 2 mm. 

BWPE ∼30 100% 1 BWP data with simulated skull-stripping and segmentation 
errors (see Fig. 5 ) to test the robustness of our measures in 
case of severe processing problems. 

CAP 400 39.1–78.3 (70.7 ± 5.4) 50% 1 Simulated atrophy dataset [ 39 , 43 ] to test for side effects of 
GM tissue atrophy that correspond to aging of about 100 years. 

IXI 554 20–86 (48.5 ± 16.4) 44.8% 3 Brain aging sample to test the effects of age, brain size, and 
sex (only scans with complete phenotypic data) [ 44 ]. 

ATLAS (R1.2) 304 NA NA 11 T1 images of subjects with (masked/unmasked) lesions to test 
the stability in case of severe structural changes [ 40 ] 
(controlled access: [ 45 ]). 

ADHD200 491 52.9 7 T1 images of healthy subjects of the train dataset (site 2 of 8 is 
only in the test dataset) [ 46 ]. 

MR-ART 148 ∗ 3 18–75 (30.0 ± 12.8) 35.1% 1 Dataset without and with intended motion artifacts [ 9 , 47 ]. 
TRT 6 (127) ∼30 100% 1 Various magnetic resonance protocols with a scan time 

duration from 30 seconds to 11 minutes on a 3T Philips 
scanner [ 41 ]. The scans were selected based on differences in 
scan time driven by resolution and parallel imaging (SENSE), 
while ensuring the similarity of other MRI parameters (see 
supplementary table S2 ) 
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correlation (Spearman’s ρ < | 0.1 | ) with the other tested perturba- 
tions (see table in Fig. 5 A, C). This suggests considerable specificity 
of the proposed quality measures. The combined SIQR score also 
showed a very strong association with the segmentation quality κ
(Spearman’s ρ = –.916, P < 0.001) and brain tissue volumes (Spear- 
man’s ρCSF/GM/WM 

= –.729/–.647/.805, PCSF/GM/WM 

< 0.001) (Fig. 5 B). 
The root mean square errors (RMSEs) between the expected and 

measured values of the SIQR were 3.133, 2.530, and 0.263 rps for 
the BWP test set, the BWP-derived segmentation error test set, and 

the cortical atrophy phantom (CAP), respectively (Fig. 5 D). 
Most notable is the quantification of the image resolution,

where the simple voxel-based resolution rating RES did not work 
well in interpolated data (i.e., as expected in 225 of 625 cases), re- 
sulting in a lower correlation (Spearman’s ρ = .332) and a high 

RMSE of 8.207 rps. The edge-based resolution measure (ECR), on 

the other hand, generally performed better (Spearman’s ρ = .585, P 
< 0.001) but was strongly affected by noise (Spearman’s ρ = .631,
P < 0.001) and inhomogeneity (Spearman’s ρ = .158, P < 0.001) 
compared with other scores. The tests with simulated segmen- 
tation errors suggested that NCR and ICR were extremely robust 
(Fig. 5 E), whereas ECR and especially FEC were quite sensitive to 
strong (i.e., 1 voxel) over-/underestimations of CSF and WM. 

Real data 

The real data analysis of IXI and ATLAS cohorts suggests that the 
proposed quality measures were not affected by total intracranial 
volume (TIV, rSIQR = .089, PSIQR = 0.559), age ( rSIQR = −.187, PSIQR = 

0.079; Fig. 6 A), sex (Mann–Whitney U test: U = 39,125, Z = 0.584, P 
= 0.558), or stroke lesions in the ATLAS dataset (Fig. 6 B), while sex 
showed minor effects in IXI. Since IXI rather contains scans with- 
out significant motion artifacts, it provides a useful estimate of the 
typical overall variability in terms of the standard deviation of the 
SIQR score with 1.625 rps (Guys/HH/IOP = 1.629/1.606/1.641 rps).
However, outliers with motion artifacts are often found in chil- 
dren, as shown in the ADHD200 dataset (Fig. 6 C), with an average 
tandard deviation of the SIQR scores of 2.078 rps (sites 1, 3–7 =
.543/1.578/1.493/4.061/1.528/1.314/1.0273 rps). 

The effects of motion artifacts were evaluated using the MR-
RT dataset (Fig. 7 A). In order to detect motion artifacts, each
core was normalized (by subtracting the first quartile value to
onsider the typical protocol quality), and an ROC was applied.
he measures were tested under 3 conditions, namely comparing 

i) no versus severe artifacts, (ii) no versus light + severe artifacts,
nd (iii) no + light versus severe artifacts (Fig. 7 B). The best ROC
hresholds to separate good from bad scans in the 3 groups were
.20/1.90/1.55 rps for the nSIQR. The accuracy of the SIQR, as de-
ermined by the ROC (an average over the 3 groups), was 0.902
nd 0.899, with an area under curve (AUC) of 0.974 and 0.969 for
AT12 and SPM, respectively. The failure cases where the measure
as not in accordance with the expert ratings are available in the

upplementary material. 
Moreover, we have demonstrated the expected decrease of GMV 

ith aging and in relation to motion artifacts in the MR-ART
ataset for CAT12 and SPM25 segmentation (Fig. 7 C–F). The re-
ults indicate that higher segmentation error (measured by the 
statistic comparing motion-free and motion artifact–containing 

cans) and hence lower image quality may lead to underestima-
ion of GM and overestimation of WM volume. 

We further tested the association of our measures with the es-
ablished measures from the MRIQC 0.16.1 [ 13 ] (see [ 9 ] for the pro-
essing). The results are presented for selected MRIQC measures 
n Fig. 8 . SIQR was highly associated with a signal-to-noise ratio of

RIQC, especially that of white matter ( ρ = .927, P < 0.001), as well
s summary standard deviation of the background ( ρ = −.937, P
 0.001). For associations with all the measures from MRIQC, see
upplementary Fig. S6 . 

Finally, we validated the proposed quality metrics using a scan–
escan test where we inspected the difference in quality scores
nd segmentation accuracy with regard to scanning time and 

round-truth image, respectively (Fig. 9 ). The expected improve- 
ent of image quality was clearly observable in terms of sharper

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf146#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf146#supplementary-data
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Figure 5: (A) The dependency of quality measures on manipulated levels of noise, inhomogeneity, and resolution using the BWP: NCR, ICR, ECR, and 
FEC. (B) The SIQR integrates all these measures into 1 score and shows significant associations with segmentation quality (characterized by κ) and the 
rGMV based on CAT12. (C) Overall, our ratings show specific relationships to their corresponding BWP perturbations but not others and (D) small 
RMSEs also in the case of simulated segmentation errors (E) or aging (F). Of note, the numerical grading system and percentage system are inversely 
scaled, where –10 rps correspond to + 1 grade and roughly correspond to the emergence of obvious motion artifacts. 
∗ See the Supplementary Table S1 for the full table in C. 
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natomical details and reduced noise. The κ indices, relative gray
atter volume (rGMV), and SIQR scores confirmed these visual

bservations but pointed out further interesting details. The noisy
hort time scans S1 and S2 showed significantly lower κ, worse
IQR ratings, and smaller GM volumes, whereas the other scans
ere highly comparable. 

iscussion 

ere, we introduced a QC framework for structural (T1-weighted)
RI data. We defined and validated various automated quality

atings based on well-defined BWP image quality features, such
s noise, inhomogeneity, and resolution [ 8 ], and integrated them
nto a single SIQR score to facilitate practical applications in
he context of clinical and cognitive neuroscience. We further
emonstrated that our measures (i) are robust to simulated
egmentation problems and cortical atrophy; (ii) are independent
f sex and brain size, showing only minor expected associations
ith chronological age, as well as severe disease-related changes;
nd (iii) allow the reliable assessment of motion artifacts within
 protocol. In artifact-free data, image quality typically varies
etween 2.5 and 5 rps (0.25–0.5 grade), whereas light or strong
rtifacts typically result in a reduction of ratings by 5 or 10
ps (equivalent to a 0.5 or 1.0 increase in grades), respectively.
1-weighted images with low-quality ratings might show a
ystematic underestimation of gray matter volume, first demon-
trated in the case of motion artifacts by [ 7 ]. Strongly affected
ata should therefore be excluded from the analyses. In the case
f less severe artifacts, the quality rating might be included as
 covariate [ 17 , 19 ] or using weighted least squares [ 18 ] during
tatistical analyses. However, an empirical comparison of the
omplex statistical effects of alternative approaches to account
or automatically generated (i.e., known) quality differences in
ownstream analysis tasks is still lacking. 

The proposed QC framework offers a simple and efficient ap-
roach to identify structural MRI scans that are suitable for the
rospective use in structural processing tools (especially within

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf146#supplementary-data
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Figure 6: (A) The results of the structural dependency test in the IXI dataset showed that the SIQR measure is independent of age and TIV and only 
slightly associated with sex (see the Methods section for other quality measures), with an average standard deviation 1.625 rps per site. (B) The results 
from the ATLAS dataset suggest that severe structural changes in terms of lesions do not significantly affect the SIQR measure when comparing raw 

versus masked images. (C) SIQR measurements in the ADHD200 dataset for children and young adults acquired by 7 different centers, including scans 
with motion artifacts. (D) To identify outliers with motion artifacts (over multiple sites), a normalization by the typical protocol quality (defined by the 
first quantile of the SIQR values per site) can be used, where scans with more than 5/10 rps ratings typically have light/strong motion artifacts, 
respectively (see MR-ART dataset in Fig. 7 ). Note that our rating system is designed to assist in identifying cases that require further human 
evaluation, depending on the needs of the study. 
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SPM/CAT12 framework) and brain imaging analysis in both clin- 
ical and research settings. This was also confirmed in previous 
studies [ 21 , 22 , 48 ] that evaluated the utility of earlier versions of 
this QC framework. 

In the following sections, we discuss further aspects of the de- 
velopment of our SIQR measure and its subordinate quality mea- 
sures (with regard to existing alternatives), their performance in 

simulated and real data samples, and their potential for assessing 
the quality of images from other sequences and modalities. 

SIQR measure development 
Various image quality frameworks estimate some of their qual- 
ity metrics based on information extracted from the image back- 
ground [ 13 , 14 , 49 ]. In contrast, our approach focuses on estimat- 
ing quality only within the brain for 3 reasons. First, the back- 
ground values in public datasets can be corrupted by various 
defacing and skull-stripping routines [ 50 , 51 ]. Second, the back- 
ground may contain artifacts (e.g., motion artifacts from the jaw 

or tongue) or unwanted properties (e.g., noisy backgrounds in 

MP2RAGE) [ 36 ] that do not necessarily affect the brain, or con- 
versely, the artifacts in the brain do not or are less likely to affect 
the background. Third, the background does not provide infor- 
mation about image inhomogeneity, tissue contrast, and spatial 
anatomical resolution [ 52 ]. While certain artifacts may be more 
prominently visible in the background [ 14 ], they are of interest to 
the user only if they also affect the brain. Furthermore, the evalua- 
tion of image quality within tissues must take into account struc- 
tural aspects such as (i) the partial volume effect, where a voxel 
contains tissue of more than 1 tissue class, and (ii) changes in 
rain development and aging, such as tissue degeneration due to
hite matter hyperintensities, small vessel disease, or perivascu- 

ar spaces [ 53 , 54 ]. Consequently, the proposed framework adapts
hese regions of interest by applying specific thresholds and mor- 
hological operations to minimize bias from age/disease, as we 
ave demonstrated in the IXI and ATLAS datasets. Moreover, the
roposed intensity-based measures are normalized by (minimum) 
issue contrast rather than signal intensity, as the separation be-
ween brain tissues, especially the GM and WM, is essential for
egmentation and surface reconstruction [ 25 , 55 ]. 

Our proposed individual quality subscores have largely been 

stablished based on well-known image quality aspects of the 
WP, which was built to represent the large variability in image
uality of structural T1-weighted MR images [ 8 , 56 , 57 ]. By taking

nto account these predominant aspects of image quality, we have
reated ratings that are easy to understand, even without a tech-
ical background. The ratings were integrated into a single SIQR
ating to support the users during the evaluation process. To com-
ine the measures, we have used an RMS-weighted average (of the
rades) with a power of 4 rather than 2, to place greater emphasis
n the more problematic aspects of image quality. This is relevant
ecause effects of severe problems often cannot be compensated 

y other factors (e.g., if there are severe motion artifacts, a much
igher image resolution typically cannot account for this). 

In particular, SIQR is strongly predictive of segmentation ac- 
uracy (quantified by the κ measure) and the extracted GM vol-
me, although its quantification is largely independent of struc- 
ural features. Thus, SIQR can facilitate the estimation of image
uality–related variance in individual scans or samples, even for 
onexpert. Alternative quality control tools, such as MRIQC [ 13 ],
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Figure 7: (A) Example images from the MR-ART dataset [ 9 ] for 3 different conditions based on expert ratings splitting data into (no), (light), and 
(strong) motion artifacts (MAs). (B) ROC curves when classifying these groups using SIQR (see the Methods section for ROCs of other quality ratings) 
with high accuracy (ACC) and AUC. The thresholds (th) of the ROC were estimated on the nSIQR values and applied in a split-half design (run1 vs. 
run2). We tested 3 options in handling cases with light MAs, where the no versus strong test case was only possible in a smaller subsample ( n = 167), 
ignoring the controversial light cases; only 4 cases were misclassified (C; see the supplement for the failed cases for the 2 groupings with light motion 
artifacts). To separate all motion cases, a threshold of about 5 rps worked best, whereas the separation of strong motion artifacts needed a higher 
threshold of about 7 to 9 rps. In other words, scans with a rating of 5 to 10 rps lower than the typical quality of the protocol should be checked. (C, D) 
We further evaluated the relative GM tissue volume change (in relation to aging) in percentage points (pps) of scans with motion artifacts compared to 
the ones without for each subject processed by SPM and CAT12. As the MR-ART dataset only includes motion-free and affected scans, we estimated 
the tissue changes in motion cases compared to the one without motion. The results suggest that the expected lower segmentation accuracy for lower 
image quality leads to GM underestimation and WM overestimation, where motion artifacts of 10 rps are roughly comparable to a GM loss within 5 
years. (E, F) The boxplot of the 3 expert-defined motion groups clearly showed the expected GM underestimation, WM overestimation, and SIQR 
ratings in case of strong motion in SPM and CAT12. 
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Figure 8: Spearman correlation coefficients between expert rating (i.e., 
expert rating group: 1, no motion; 2, light motion; 3, severe motion), �V 

(dvol_rel_CGW, volume change in relation to motion-free scan), κ
statistic (estimated with respect to the motion-free scan and averaged 
across all tissues), CAT12 quality ratings (NCR, ICR, res_ECR, FEC, and 
the weighted average SIQR), and selected MRIQC quality measures in 
the MR-ART dataset [ 9 ] (for full table, see Supplementary Fig. S6 ). 
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might be challenging for novices due to nonstandardized mea- 
sures that require substantial user experience. Moreover, a nor- 
malization using BWP quality features also enables a direct com- 
parison across protocols (see test–retest example), although cau- 
tion is advised, as the results may be subject to bias by (i) our focus 
on a segmentation-centered definition of quality, (ii) the popula- 
tion under study, and (iii) project-specific needs or considerations 
(e.g., optimized magnetgic resonance [MR] parameters to image 
specific structural changes rather than preprocessing). 

Identification of scans with data anomalies and 

artifacts 

The proposed framework is part of the CAT12 preprocessing and 

utilizes the CAT12 segmentation, but it could also be used as 
an independent SPM batch with other segmentation algorithms 
(e.g., from SPM) [ 33 ]. Segmentation routines are widely used for 
structural brain analyses and have undergone intensive testing 
to be valid, accurate, and robust for a variety of protocols, individ- 
ual anatomies, and demographics (e.g., [ 25 , 33 , 35 ]), making them 

ideal for image quality analysis. By focusing on general global 
aspects of the scan rather than local ones, problematic struc- 
tures and areas such as partial volume effect voxels or WM le- 
sions can be omitted, allowing precise, robust, and largely consis- 
tent results, even in case of severe classification faults (e.g., failed 

skull-stripping or misclassification), as tested here under simu- 
lated conditions. 

Although SIQR could be used for fully automatic outlier detec- 
tion (see also [ 21 ] and [ 50 ]), we believe that the huge variability of 
the type of artifacts, their regional occurrence, and their impact 
on image processing still require study-specific knowledge and, if 
possible, a short user inspection—for instance, when locally lim- 
ited or mild artifacts affect regions that are not relevant to the 
study (e.g., if the study focuses on frontal regions, cerebellar ar- 
ifacts from jaw movements are acceptable) or whenever lower 
reprocessing accuracy is acceptable (e.g., for local alignment of 
rain surfaces or atlases for other modalities). 

Multivariate outlier detection schemes that are typically ap- 
lied based on the processed data of a sample in the normal-

zed feature space, using similarity analysis of normalized GM 

ata (e.g., the Gram matrix or kernels) in CAT12 (see Software sec-
ion), can be used to detect outliers with preprocessing problems
r highly deviating anatomy. However, the proposed image qual- 
ty assessments are specifically designed to measure differences 
f image quality (in native space) rather than segmentation ac-
uracy (in normalized space) or anatomical properties, such as 
troke lesions, and can therefore be used in addition to previously
entioned outlier detection schemes to identify cases where im- 

ge artifacts could bias analysis. 

he role of subordinate quality ratings 

hile the SIQR composite is sufficient for most analyses, our
ramework facilitates deeper insights, providing more specific 
ubordinate ratings. 

The NCR is not only a very robust measure, as it can be quanti-
ed in different regions, but also very sensitive to motion artifacts,
nd it gives the most relevant values when the image resolution
s adequate ( < 1.5 mm). 

The ICR had little to no impact on detecting problematic data
e.g., when testing for segmentation quality κ in the BWP or mo-
ion artifacts in MR-ART), as inhomogeneities tend to describe 

ore protocol/scanner-specific aspects and can be corrected 

airly well in most protocols [ 58 ]. Increased inhomogeneities typ-
cally occur in high-field scans without protocol-specific correc- 
ion schemes. Although possible disadvantages are generally out- 
eighed by superior resolution and higher signal-to-noise ratio,
ias correction schemes in preprocessing routines can fail in some 
ases [ 59 ]. It is therefore recommended to retain this measure in
 general rating. 

The RES rates the voxel size in terms of how good structural
eatures can be imaged. Nevertheless, structures can still be bi-
sed by interpolation [ 10 ], blurring, noise, or motion artifacts. A
eal quantification of the sharpness of anatomical structures by 
ur ECR is therefore essential, although it is strongly affected by
oise and the segmentation quality compared to other ratings. 

The FEC represents our adaptation of surface topology [ 60 ,
1 ]. The measure showed a strong association with noise levels
nd supports the identification of motion artifacts. However, com- 
ared to NCR, it is noisier and depends strongly on the input seg-
entation and MR protocol. Data with a low spatial resolution or

aulty/simplified segmentations with a limited number of details 
an have fewer defects and result in better ratings. Nevertheless,
EC presents a good extension to the NCR and ECR measurements.

In contrast to MRIQC [ 13 ], which provides a variety of raw un-
caled measures (with reversely signed scored ones among them),
e tried to establish measures that reflect the known specific
erturbances and are directly interpretable by applied scientists.
evertheless, raw quality measures are also available in the XML
les, allowing advanced users to perform detailed inspections. All 
C measures can be used in statistical analyses or machine learn-

ng models according to the study needs [ 50 ]. 

valuation in simulated and real data 

imulated data allow basic validation of methods under expected 

onditions and comparison with actual ground-truth results. The 
WP is a standard for evaluating structural brain image pre-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf146#supplementary-data
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Figure 9: An illustrative example of the test–retest sample analysis showing 6 images with an increasing scan time and image quality. The top and 
bottom rows represent the intensity-normalized T1 images and the CAT12 segmentation, respectively, with increasing segmentation accuracy in 
longer scan times when compared to the average ground truth (created from the best 127 test–retest images). The rGMV is slightly underestimated in 
low-quality data. 
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rocessing [ 56 , 57 ] and was used here to define and normal-
ze our quality measures and to test their relationship with the
egmentation accuracy. Due to the robustness of CAT12, we de-
ided to simulate extreme segmentation problems. The results
howed high stability for the NCR and ICR measures, but high
usceptibility to error for the ECR and FEC in the case of severe
ver/underestimation of tissue segments, as both depend on the
orrect definition of the GM/WM boundary. In the simulated ag-
ng phantom [ 39 ], the results showed small systematic but negli-
ible changes in the quality measures, which could also be due to
mall differences in the simulated images (see bias differences in
ig. 5 F). Since a lot of our tests relied on BWP, which is limited in its
bility to simulate artifacts or new protocols, such as MP2RAGE,
ew frameworks such as TorchIO [ 62 ] present a possible next step

or future tests. Nevertheless, an empirical validation on real MRI
atasets was necessary to demonstrate the validity and practi-
al benefits of the introduced quality assessments and to avoid
veradaptation to synthetic data. Therefore, we used the IXI and
TLAS datasets to demonstrate that SIQR is unaffected by age,
ex, head size, or severe structural disease-related changes. In MR-
RT, we tested the ability to identify different degrees of motion
rtifacts and the effects on gray matter segmentation in aging.
verall, we demonstrated the robustness and applicability of our
IQR measure. 

hortcomings and outlook 

he QC measures proposed in this study were designed to be in-
ependent of segmentation accuracy and were tested in a va-
iety of protocols. However, useful results can only be expected
or valid segmentation inputs (where we focus on CAT12), and
ighly specific T1-weighted protocols may result in unexpected
atings. Other modalities, such as T2-weighted, proton density–
eighted, or fluid-attenuated inversion recovery (FLAIR) images,

an be assessed, but the dependance of the SIQR on the sepa-
ability of CSF, GM, and WM may result in low-quality scores. In
ddition, our ratings are not designed to assess functional or dif-
usion data, where more specific tools are available [ 12 , 15 , 63 ].
lthough such data can also be used for tissue segmentation, the

ow GM-WM contrast is challenging, and the resulting segmenta-
ions or surfaces are less accurate and possibly biased compared
o typical T1-weighted images [ 33 ]. It is important to note that pre-
rocessing tools are designed to work reliably even on problematic
atasets, and results from these images can often still be used, al-
hough these should be interpreted with more caution. Moreover,
canner-specific changes, such as geometric distortion, have not
een considered. Consequently, our measures are not designed to
onitor scanner properties that require real MRI phantoms [ 64 ,

5 ]. 
In addition, our scan–rescan results demonstrated instances

f comparable segmentation quality, with up to 40% faster scan
imes. This is particularly relevant for clinical MRI, where cost-
ffectiveness (short scan times for high patient throughput)
resents an essential aspect, and images of adequate, but not
xceptional, quality are appropriate for diagnosis [ 66 , 67 ], simul-
aneously reducing both financial and environmental costs [ 68 ].
n the other hand, using only adequate image quality for certain
rojects does not eliminate the need for cutting-edge resolution
 59 ], although improperly enhanced image resolution (e.g., 0.5 ×
.5 × 1.5 mm for 1.5 Tesla systems) often leads to increased noise
r parallel imaging artifacts that can disturb preprocessing. It is
herefore advisable to pilot modified protocols for the preprocess-
ng pipelines you plan to use or follow the established standard
rotocols (e.g., ADNI [ 69 ] and HCP [ 70 ]). 

onclusion 

ur fully automatic quality control framework within the
PM/CAT12 ecosystem enables a standardized, accurate, and ro-
ust evaluation of large heterogeneous datasets to detect outliers
ith inadequate image quality using a single-image quality rat-

ng: SIQR. Its flexibility, low cost, and simplicity support a wide
ange of applications and can provide a valuable contribution to
uality assurance in clinical practice and research. 

ethods 

ll the statistical analyses were performed in MATLAB 2024a.
he associations between different metrics were calculated us-
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Figure 10: (A) The relation between the classical NCR and contrast-to-noise-ratio (CNR) (A) on the 1-mm BWP data with 1% to 9% noise and 20% to 
100% bias. (B) The advantage of the CNR’s linear scaling is clearly visible in its relationship with the preprocessing quality represented by the κ value, 
where it allows for a better separation in the range of lower image and segmentation quality. (C) The nonlinear relation between NCR and the κ
statistic (average of all brain tissues segmented by CAT12), on the other hand, enables a finer separation of high-quality data, which is less useful for 
detection and quantification of outliers. 

 

σ  

a

u
n  

o  

a  

b  

(  

i  

r  

w  

b  

r  

t
m  

l  

c  

W  

b

I
I  

f  

t

 

b  

t  

t  

G
fi  

a  

e

a  

F  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf146/8361448 by guest on 12 January 2026
ing Spearman’s rank correlation (unless stated otherwise), and the 
Mann–Whitney U test was used to compare the quality metrics 
between men and women. 

The following section provides a more technical introduction 

to our quality measures. 

Normalization and scaling 

As segmentation and surface reconstruction rely heavily on the 
contrast between tissues, the normalization by contrast rather 
than the signal intensity allows a better correspondence between 

image and processing quality. Moreover, contrast-to-measure ra- 
tios rather than measure-to-contrast ratios were used as they sup- 
port linear scaling to the interferences of the BWP and a linear 
relationship to the κ values of CAT (Fig. 10 ). 

Simple linear scaling function: 

QRgrade = β
(
QMgrade , BQ Mgrade , WQ Mgrade 

)

= max 
(
. 5 , min 

(
10 . 5 ,

(
QMgrade − WQ Mgrade 

)
/ 

(
BQ Mgrade − WQ Mgrade 

) ∗ 6 + . 5 
))

to transform the original quality measure QM into a quality rating 
QR, with BQM as the best (95 rps, grade 1) and WQM (45 rps, grade 
5) as the worst regular value. 

Noise 

The first quality rating characterizes image noise, defined here as 
the NCR, to describe how well the tissue can be locally separated 

independent of the protocol-specific tissue contrast. The estima- 
tion was specified as the minimum of the average local standard 

deviation, σ , of the bias-corrected image Cbc within the optimized 

WM and CSF regions WMe and CSFe. The values were normalized 

by the minimum tissue contrast cmin and scaled by the results of 
the linear fit: 

NCR = β (min ( ˜ σ (Cbc (CSFe )) , ˜ σ (Cbc (WMe )))) /cmin , 0 . 0183 , 0 . 0868) ( SE 1 )

with 0.0130 as the best and 0.0682 as the worst rating of the un- 
scaled measure obtained for the BWP train dataset. For data anal- 
ysis, the bias-corrected image Cbc allows for a more meaningful 
characterization of the local varying noise level than the original 
image, since it considers processing problems in areas with low 

signal intensity and increased noise. The local standard deviation 
was estimated in a 5 × 5 × 5 voxel neighborhood of a voxel and
veraged to reduce the influence of remaining inhomogeneities. 

The CSF and WM regions, rather than the background, were 
sed because the background can contain interferences that do 
ot affect the brain [ 6 , 36 ] or could be affected by anonymization
f subject features by defacing or brain extraction (Fig. 2 A). CSF
nd WM are beneficial for noise estimation compared to the GM
ecause they (i) cover relatively large and homogeneous areas and
ii) are less affected by partial volume effects and locally vary-
ng tissue contrast (e.g., by myelination). However, using only CSF
egions often failed in younger subjects and low-resolution data,
hile the exclusive use of WM led to age-related effects caused
y WM lesions or small vessel disease or perivascular spaces. The
egions were optimized by an erosion step and additional tissue
hresholds to avoid side effects by partial volumes, segmentation 

ethod, or WM lesions in elderly subjects that are quite simi-
ar to noise or artifacts (Fig. 2 B). The minimum tissue contrast

min between CSF, GM, and WM was used because a greater GM-
M contrast led to problems in detecting the CSF-GM and CSF-

ackground boundaries. 

nhomogeneity 

n order to assess intensity inhomogeneity in images (often re-
erred to as bias), the coefficient of joint variation (CJV) [ 52 ] proved
o be one of the most suitable measures [ 58 ]: 

CJV = (σ (CGM 

) + σ (CWM 

)) / | μ(CGM 

) + μ(CWM 

) | ( SE 2 ) 

However, since it is known that the GM is strongly influenced
y partial volumes and locally different GM intensities [ 53 ], only
he standard deviation σ of the WM is determined here. Similar
o the NCR, the minimal tissue contrast is used rather than the
M-WM contrast. To remove noise-driven variance, a Laplacian 

lter with a Dirichlet boundary condition is applied in the WMe
rea, resulting in a locally averaged image Cs, which was used to
stimate the ICR: 

ICR = β (σ (Cs (WMe )) /cmin , 0 . 2270 , 1 . 3949) ( SE 3 ) 

Since most methods are able to correct strong inhomogeneities 
lmost without loss of segmentation accuracy (e.g., approach X in
ig. 1 B) [ 58 ], a weaker weighting was used. The worst BWP inho-
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Figure 11: The effects of the simulated reduced resolution by resampling (downsampling to low resolution, followed by upsampling to original 
resolution) and Gaussian smoothing on the segmentation accuracy (quantified by κ) for the ECR resolution measure. Quantifying only by voxel 
resolution (RMS resolution score) would give the same value (grade 2 for 1-mm data) for all test cases (results for the BWP with 1% noise, 20% 

inhomogeneity field A, and isotropic 1-mm resolution). It is also obvious that there is a large step between the original resolution and the first 
resampled resolution, which describes the general information loss of data resampling and would be different in real data or if input data with a 
higher ground-truth resolution were used (i.e., test bias). In addition, quantification in low-resolution data (below 2 mm) becomes increasingly difficult 
due to the highly folded and thin cortical band (sampling theorem). 
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ogeneity level describes a grade C (see Fig. 3 ) that can be already
easured in 3 Tesla data without protocol-based corrections. 

esolution 

he spatial resolution of MRI images plays an important role in
btaining meaningful representations of anatomical structures.
or the general assessment of voxel volume and proportion in a
ingle value, we used the RMS notation to define the RES: 

RES = β
(((

x2 + y2 + z2 ) / 3 
)1 / 2 

, 0 . 5 , 2 . 5 
)

( SE 4 ) 

As a consequence of this definition, outliers with exception-
lly low resolution in 1 of the 3 dimensions were weighted much
igher than outliers with high resolution, resulting in an asym-
etric evaluation where similar (isotropic) resolutions are pre-

erred. The quality range was arbitrarily determined to character-
ze typical resolutions, with a simple scaling step size of 1 grade
10 rps) for another 0.5 mm, with 0.5 mm as an excellent result
nd 2.5 mm as the lowest-quality limit close to the average corti-
al thickness in humans. 

For the principal evaluation, we tested RES by reducing and
einterpolating the tissue label map of the BWP to quantify the
oss of information by Cohen’s κ [ 31 ]. RES yielded a higher Spear-

an’s correlation coefficient than the simple voxel mean RESM
 ρRES = 0.994; ρRESM 

= 0.965; with RESM = β((x + y + z)/3, 0.5, 2.5).
lthough RES provides a good description of resolution under nor-
al conditions, it has the major limitation that it does not quan-

ify the true anatomical level of detail (i.e., how well fine struc-
ures are defined and how sharp the boundaries are). 

The ECR is the average gradient ∇ of the GM/WM boundary
outlined by the segmentation and masked for extreme gradients,
.g., between CSF and WM and blood vessels) and normalized by
he minimum tissue contrast and scaled similarly to the RES rat-
ng. It allows an evaluation of structural resolution independent
f resampling or smoothing. 

ECR = β ( ∇WM , 0 . 0202 , 0 . 1003 ) ( SE 5 ) 
To test the quantification of anatomical rather than image
esolution, spatial details were removed by resampling (down-
ampling to 1.25:0.25:3.00 mm and resampling to 1.00 mm) and
moothing (0:0.25:3.00 mm) a BWP image with 1% noise, 20% in-
omogeneity of field A, and 1-mm resolution. The parameter test
ange was defined by the resolution of the BWP, the minimum
moothing resolution (0.2 mm for 1.0-mm data), and the average
ortical thickness of 2.5 mm. The resulting images were then seg-
ented to quantify changes using Cohen’s κ. In both cases, the

nal voxel resolution remains constant, so that the voxel-based
MS resolution measurements are identical even though the im-
ges become blurred and κ decreases (see Fig. 11 ). In contrast,
ur new ECR measure allows quantification of both test cases, al-
hough quantification of GM/WM edge strength and tissue con-
rast introduces further variance ( r > 0.98, P < 7e-07). 

However, there are several limitations of the measure itself,
ut also of the test design: (i) the BWP is limited in its anatom-

cal details, supporting only 1-mm resolution with some partial
olume effect; (ii) linear/spline resampling and smoothing affect
he measures differently; and (iii) κ only quantifies segmenta-
ion accuracy, but not the quality of more complex surface re-
onstruction (e.g., Hausdorff distance to the gold standard sur-
ace) that could be used. Nevertheless, ECR already represents
 significant step forward in quantifying image detail in real
ata. 

urface topology 

n order to approximate the surface topology in a reasonable
ime, the FEC was estimated at a resolution of 2 mm. The whole-
rain WM surface was used rather than the typical neocortical
emispheres of most surface pipelines. To account for partial vol-
me effects at the lower resolution, 2 WM surfaces were gen-
rated at thresholds of 0.25 and 0.75. As we observed more de-
ects in children due to the thin developing WM structures, we
sed a maximum filter to extend and stabilize the surface cre-
tion. 

FEC = β ( EC , 130 , 470 ) ( SE 6 ) 
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where the Euler characteristic (EC) is defined as EC = V −
E + F, with V as number of vertices, E as the number of 
edges, and F as the number of faces of the created brain sur- 
face. 

Averaging 

To obtain a meaningful composite measure of SIQR, we tested 

the mean, median, maximum, and 4 variants of the exponen- 
tially weighted averages with regard to their performance on the 
BWP and MR-ART dataset (Spearman’s correlation between tis- 
sue volume/ κ and SIQR). To quantify the effect of interferences,
we estimated the volume difference �V and the κ value to the 
artifact-free case (averaged across all tissue classes), where vol- 
ume changes and κ statistics should be highly associated with 

the quality rating ( Supplementary Table S2 ). We finally selected 

the power 4 function as it is more sensitive to outliers. 

Availability and Requirements 

Project name: Quality Metrics of the Computational Anatomy 
Toolbox (CAT12) 
Project homepage: https://neuro-jena.github.io/cat , https: 
//github.com/ChristianGaser/cat12 
Operating systems: Linux, Mac OS, Windows 
Programming language: MATLAB 

Other requirements: Statistical Parametric Mapping (SPM) https: 
//www.fil.ion.ucl.ac.uk/spm/, https://github.com/spm 

License: GNU GPL version 2 or higher 
RRID:SCR_019184 
Processing was done under Mac OS using MATLAB 2024a, SPM25,
CAT12.8.2 R2166-R2890 (segmentation), and CAT12.9 R2890 (qual- 
ity control). 

Availability of Supporting Source Code and 

Requirements 

All additional supporting data and evaluation scripts are available 
in the GigaScience repository, GigaDB [ 30 ]. The framework is a part 
of the CAT12 toolbox [ 23 , 24 ], which is part of SPM25 [ 26 , 27 ]. 
Although SPM and CAT do not require additional toolboxes, the 
code used to generate the results and figures is available in the 
“catQC” subdirectory of CAT12 and the GigaScience repository and 

requires MATLAB 2024 or later with the “Statistics and Machine 
Learning Toolbox” and the “Curve Fitting Toolbox.”
Project name: Quality Metrics of the Computational Anatomy 
Toolbox (CAT12) 
Project homepage: https://neuro-jena.github.io/cat , 
https://github.com/ChristianGaser/cat12 
License: GPL-2.0 license 
SciCrunch: RRID:SCR_019184 
System requirements 
Operating systems: Linux, Mac OS, (Windows) 
Programming language: MATLAB 

Package management: SPM25: https://www.fil.ion.ucl.ac.uk/spm/, 
https://github.com/spm 

CAT12: https://neuro-jena.github.io/cat , 
https://github.com/ChristianGaser/cat12 
Hardware requirements: Computer with more than 4 GB RAM 

that supports MATLAB 
dditional Files 

upplementary Fig. S1. (A) Boxplots of different averaging func- 
ions on the expert grouping of the MR-ART dataset. Higher pow-
rs allow the outliers to be stronger and result in more appropriate
atings. (B) Higher powers also result in a more linear relationship
etween the image quality and segmentation quality κ (estimated 

or all scans with the motion artifacts of a subject in relation to
heir motion-free scan). (C) Pearson’s correlation plots of different 
ombined ratings with different powers and the average volume 
oss (subplot 1 on the BWP and 2 on MR-ART) and κ loss (sub-
lot 3 on the BWP and 4 on MR-ART) and for a simple mean of
olume and κ loss in both cases (subplot 5). The black line in-
ludes all measures; the colored lines present all cases while leav-
ng out one of the measures. The combination of NCR + res_RMS
epresented our classical IQR rating that was now extended by
he edge-constrast ratio (res_ECR) and the fast Euler character- 
stic (FEC). In both cases, we observed that the inhomogeneity-
o-contrast ratio (ICR) was contraindicative in describing the im- 
ge quality, as higher scan quality is mostly driven by low noise
nd high resolution that are generally better in high-field scans,
hereas the higher bias can be corrected quite well by state-of-

he-art approaches such as SPM or CAT12. 
upplementary Fig. S2. We simulated the effects of segmentation 

ccuracy for brain extraction problems (A) and for tissue over- 
nd underestimation (B). Effects of skull-stripping problems are 
hown as lines in C, while the segmentation problems are shown
s a scatterplot. Our quality scores are almost unaffected by se-
ere skull-stripping problems ( κ < 0.6), as even small regions are
ufficient for global estimation. Tissue classification errors are 
ore challenging, even if the reduced accuracy is quite small, be-

ause the contrast estimation is biased. In general, problematic 
ases tend to underestimate the image quality, which indirectly
elps to identify serious preprocessing problems. 
upplementary Fig. S3. Changes in current quality scores (A) for
he phantoms presented in Rusak et al. (2022) (B), which simu-
ated neocortical atrophy of up to 1 mm in 20 subjects from the
DNI database, where a 0.01-mm cortical loss represents 1 year 
f healthy aging. As only the neocortical thickness is changed (C),
imilar outcomes in the measures are expected regardless of the
imulated atrophy rate. However, the slightly different inhomo- 
eneity and noise pattern in the CSF could introduce further bias
n the evaluation. 
upplementary Fig. S4. Changes of all quality ratings (NCR, ICR,
CR, FEC, and SIQR) and the relative GM volume (rGMV) for aging
left), total intracranial volume (TIV, center), and sex (right). 
upplementary Fig. S5. Changes of all quality ratings (NCR, ICR,
CR, FEC, and SIQR) in aging (A) and grouped by the expert rating
B). (C) shows the ROC analysis of each quality rating to separate
he expert rated motion groups. The change of the relative GM vol-
me ( rGMV ) for aging is shown in (D). 
upplementary Fig. S6. Spearman’s correlation coefficient matrix 
epresenting the associations between CAT12 and MRIQC quality 

easures in the MR-ART dataset (Nárai et al. 2022), as well as
ge, sex, group0 (i.e., scan name/condition, e.g., instructed mo- 
ion), group (final expert rating), relative CSF/GM/WM volume 
rCSFV/rGMV/rWMV), �V (dvol_rel_CGW, volume change in rela- 
ion to motion-free scan), and κ statistic (estimated to the motion-
ree scan and averaged over all tissues). 
upplementary Fig. S7. Example slice of the 4 false-positive cases
rom the MR-ART datasets that failed in the outlier detection in
o vs. severe artifacts. They were classified by our rating as se-
ere motion cases, whereas experts assessed them as motion-free.

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf146#supplementary-data
https://neuro-jena.github.io/cat https://github.com/ChristianGaser/cat12
https://neuro-jena.github.io/cat https://github.com/ChristianGaser/cat12
https://www.fil.ion.ucl.ac.uk/spm/https://github.com/spm
https://www.fil.ion.ucl.ac.uk/spm/https://github.com/spm
https://scicrunch.org/resolver/RRID:SCR_019184
https://neuro-jena.github.io/cat https://github.com/ChristianGaser/cat12
https://neuro-jena.github.io/cat https://github.com/ChristianGaser/cat12
https://scicrunch.org/resolver/RRID:SCR_019184
https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/spm
https://neuro-jena.github.io/cat
https://github.com/ChristianGaser/cat12
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here was 1 false-negative case in the separation for no vs. severe
rtifacts. 
upplementary Fig. S8. (A) Example slices of the false-negative
ases from the MR-ART dataset (35 of 42) that failed in the outlier
etection in no vs. slight/severe artifacts and were classified by
ur measure as acceptable but failed in the expert grouping (EG)
ith a light (EG = 2) or severe (EG = 3) motion artifact. (B) Exam-
le slices with false-positive cases from the MR-ART dataset that
ailed in the outlier detection in no vs. slight/severe artifacts and
ere classified by our measure as unacceptable but as motion-

ree by the expert. 
upplementary Fig. S9. (A) Example slices with false-negative
ases from the MR-ART datasets that failed in the outlier detec-
ion in no/light vs. severe artifacts and were classified by our mea-
ure as acceptable (no/light motion) but labeled as severe (EG = 3)
y the experts. (B) Example slices with false-positive cases from
he MR-ART dataset (35 of 47) that failed in the outlier detection in
o/light vs. severe artifacts and were classified by our measure as
nacceptable (severe motion) but as artifact free (EG = 1) or with
light motion artifact (EG = 2) by the expert. 
upplementary Table S1. Spearman correlation coefficients with
-values in the upper and lower part of the table, respectively. 
upplementary Table S2. Parameters of the full Tohoku dataset
ith the selected scans. 

bbreviations 

UC: area under curve; BWP: Brain Web Phantom; CAP: Corti-
al Aging Phantom; CAP: Cortical Atrophy Phantom; CAT: Com-
utational Anatomy Toolbox; CJV: coefficient of joint variation;
SF: cerebrospinal fluid; ECR: edge contrast ratio; FEC: full-brain
uler characteristic; FLAIR: fluid-attenuated inversion recovery;
M: gray matter; ICR: inhomogeneity contrast ratio; MRI: mag-
etic resonance imaging; NCR: noise contrast ratio; nSIQR: nor-
alized structural image quality rating; QC: quality control; QM:

uality measure; QR: quality rating; RES: resolution score; rGMV:
elative gray matter volume; RMS: root mean square; RMSE: root

ean square error; ROC: receiver operating characteristic; rps:
ating points; SIQR: structural image quality rating; SPM: Statis-
ical Parametric Mapping; TIV: total intracranial volume; TRT: To-
oku test–retest; WM: white matter. 
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