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Segmentation-based quality control of structural MRI
using the CAT12 toolbox
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Abstract

Background: The processing and analysis of magnetic resonance images is highly dependent on the quality of the input data, and
systematic differences in quality can consequently lead to loss of sensitivity or biased results. However, varying image properties
due to different scanners and acquisition protocols, as well as subject-specific image interferences, such as motion artifacts, can be
incorporated in the analysis. A reliable assessment of image quality is therefore essential to identify critical outliers that may bias
results.

Findings: Here, we present a quality assessment for structural (T1-weighted) images using tissue classification in the SPM/CAT12
ecosystem. We introduce multiple useful image quality measures, standardize them into quality scales, and combine them into an
integrated structural image quality rating to facilitate the interpretation and fast identification of outliers with (motion) artifacts. The
reliability and robustness of the measures are evaluated using synthetic and real datasets. Our study results demonstrate that the
proposed measures are robust to simulated segmentation problems and variables of interest, such as cortical atrophy, age, sex, brain
size, and severe disease-related changes, and might facilitate the separation of motion artifacts based on within-protocol deviations.

Conclusion: The quality control framework presents a simple but powerful tool for the use in research and clinical settings.
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Background

Multicenter magnetic resonance imaging (MRI) studies and data-
sharing projects have become increasingly common in cognitive
and clinical neuroscience in recent years. The collaboration of
several imaging centers, allowing for increased statistical power
through larger sample sizes, is especially beneficial for investigat-
ing rare diseases and individual differences [1-3]. However, project
deviations from the initial research plans (e.g., switching from
functional to a structural imaging focus), differences and changes
of imaging hardware and software, quality assurance procedures,
and the resulting image quality variations may introduce bias in
subsequent image processing and statistical analysis [4-7]. In par-
ticular, the presence of noise, (motion) artifacts, inhomogeneity,
or reduced resolution could affect image processing, even when
such interferences are modeled and partially corrected during
data processing [8-10] (Fig. 1).

Typically, manual quality control (QC) checks each image for
scan-specific interferences (e.g., motion artifacts) by visual in-
spection to remove outliers [6, 11, 12]. However, manual assess-
ment is time-consuming, highly subjective, and typically relies
on project-specific definitions [9]. To make this process more ef-
ficient and reliable, automated quality control approaches have
been proposed for structural [5, 13, 14], functional (e.g., [15]), and
diffusion imaging (e.g., [16]). In addition, the image quality esti-
mates can be used to harmonize imaging data [17-19]. A system-

atic overview of different QC frameworks has been provided by
[20].

In this study, we propose a powerful and easily applicable
QC framework for structural (T1-weighted) MRI data within the
SPM/CAT12 framework. Earlier versions have been extensively
evaluated in [21] and [22]. The proposed QC framework intro-
duces, standardizes, and integrates different quality metrics into
a continuous structural image quality rating (SIQR). It supports
both automatic and interactive assessments of a preprocessed
MRI scan’s suitability for prospective use, as well as the identi-
fication of potential outliers within a sample, ensuring unbiased
data analysis. All measures and tools are part of the Computa-
tional Anatomy Toolbox (CAT) [23-25] of the Statistical Parametric
Mapping (SPM) [26-28] software and also available as a standalone
version [29]. All additional supporting data are available in the Gi-
gaScience repository, GigaDB [30].

Findings

Here we present the rationale for a segmentation-based QC
framework, a definition of several quality measures, their stan-
dardization into quality scales, and the integrated composite mea-
sure, SIQR. We further describe the detection of imaging artifacts
based on the within-sample quality and introduce the interactive
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Figure 1: (A) Image properties such as noise, inhomogeneity, and resolution influence the segmentation accuracy. (B) The segmentation accuracy can
be quantified by the « similarity statistic [31], here presented for 2 segmentation approaches on simulated images [8], where larger levels of noise,
inhomogeneity, or lower resolutions result in a worse overlap with the full-resolution image without interferences. (C) An illustration in real data with
reduced anatomical details in a FLASH protocol [32] or (D) in case of movement artifacts (MR-ART sub-988484 from [9]).
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Figure 2: (A) Due to several different background types in real samples,
only the brain tissues (excluding the background) were used for the
evaluation of image quality. (B) To avoid side effects from age-related
changes in volume and structure, the tissue segmentation is optimized
to avoid tissue boundaries and perivascular spaces by morphological
operations and masking.

outlier detection. Finally, we evaluate the proposed measures us-
ing simulated and real MRI data.

Segmentation-based image quality assessment

For practical reasons, our QC framework uses the raw NIFTI for-
mat rather than the original DICOM format, as NIFTI images are
more commonly available in public datasets and are more often
used as input in data-processing tools [2]. The QC framework re-
lies on an existing conventional or deep learning-based classifi-
cation of brain tissues, which is usually a prerequisite for subse-
quent brain image analyses (e.g., [25, 33-35]). All proposed mea-
sures are based on image properties primarily within the brain
because the background might be affected by anonymization,
noise, or artifacts that do not necessarily affect the brain itself
(Fig. 2A) [6, 36]. The quality measures are optimized to avoid the
evaluation within parts of the brain that are typically affected by
aging-related tissue changes, such as white matter hyperintensi-
ties, small vessel disease, and perivascular spaces (Fig. 2B). Within
the CAT12 toolbox, the QC is the final step of the preprocessing

and extends the processing time of a subject by only a few sec-
onds. Alternatively, it can be run separately as an SPM batch for a
preexisting tissue segmentation (e.g., by SPM).

The primary conceptualization and evaluation of our proposed
QC measures is based on the Brain Web Phantom (BWP) [8], a sim-
ulated MRI dataset, which presents a well-established standard
for developing and comparing processing methods. The dataset
includes images with varying levels of noise, inhomogeneities, and
resolution. These image properties affect the segmentation accu-
racy of MRI processing algorithms (Fig. 1B) and are therefore use-
ful indicators of the quality of input data.

Quality measures

As our measures have been optimized for use in cognitive and
clinical neuroscience studies, the presentation is focused on prac-
ticality. A full (technical) description can be found in the Meth-
ods section. For intensity-based measures, we use measure-to-
contrast ratios instead of contrast-to-measure ratios. This ap-
proach ensures that the ratings follow a linear scale rather than a
logarithmic one, as defined by the BWP. For a comparison to tradi-
tional contrast-to-measure ratio, please see the Methods section.
Several key quality metrics are considered:

® Noise-to-contrast ratio (NCR): This metric estimates image
noise by calculating the lowest average local standard devia-
tion of voxel intensities in the bias-corrected image. It is as-
sessed within optimized cerebrospinal fluid (CSF) and white
matter (WM) regions and is highly sensitive for other high-
frequency artifacts such as motion.

* Inhomogeneity-to-contrast ratio (ICR): This measure evalu-
ates intensity variations across the image by calculating the
global standard deviation of smoothed intensities within the
optimized WM segment.

® Resolution score (RES): To account for distortions due to
anisotropic resolution, this score is directly computed using
the root mean square (RMS) equation.

® Edge-to-contrast ratio (ECR): Since resampling or smoothing
can degrade voxel resolution, we suggest an additional mea-
sure that captures the average slope of intensity changes at
the gray matter (GM)/WM boundary. This helps assess the
sharpness of tissue interfaces.

¢ Full-brain Euler characteristic (FEC): This metric quantifies
the topological integrity of the WM brain interface, helping
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Figure 3: Quality rating system: the percentage, numerical, and character grades were scaled on the basis of the BWP, which represents a standard for
evaluation of image-processing methods. It should be noted that excellent ratings are reserved for images with exceptional quality, whereas typical

scientific data generally receive “only” good assessments.

to detect potential distortions caused by noise and (motion)
artifacts.

These measures provide a comprehensive assessment of struc-
tural MRI image quality, ensuring that intensity-based distortions,
resolution issues, and structural inconsistencies that are relevant
for the brain tissue segmentation, thickness estimation, and sur-
face reconstruction are identified and accounted for.

Standardization of measures

Standardization into a normative range can enable simpler com-
parison across studies and support easier interpretations. To
accommodate various international rating systems, we have
adopted a linear percentage and a corresponding (alpha-)numeric
scaling (Fig. 3, QRpercentage = 105-QRgrage * 10, QRgrage = (105
QRpercentage)/10). The quality rating ranges from 0.5 (100 rating
points [rps]; grade A™) to 10.5 (0 rps; grade F) for highest and low-
est image quality, respectively. Numerical values provide a spe-
cific rating, whereas letters describe quality ranges (e.g., grade A
describes values between 90 and 100 rps). Scaling of the quality
measures was performed using half of the BWP dataset, while
the other half was used for evaluation (see “Evaluation concept
and data”). Although the BWP does not include the simulation of
motion artifacts, these are in general comparable to an increase
of noise in the BWP dataset by 2 percentage points, as demon-
strated in the Result section. In our QC measures, this roughly
corresponds to an increase of +1 grade or —10 rps compared to
motion-free data. For improved (human) readability, we standard-
ized all measures by applying a simple linear scaling function

QRgrade = max (~5, min (105’ (QMgrade - WQMgrade) /

(BQMgrade — WQMgrade) *6+.5 )) (1)

to transform the original quality measure (QM) into a quality
rating (QR), with BOM as the best (95 rps, grade 1) and WQM (45
rps, grade 5) as the worst regular value.

Integrated structural image quality rating

The SIQR is defined using an exponentially weighted average of
multiple quality scores QRg4e (s€€ Equation 2). This single com-
posite score integrates various aspects of image quality, providing
a robust metric for assessing structural image quality and identi-
fying potential outliers. We excluded the ICR from the composite
SIQR measure because most preprocessing methods can handle
bias quite well, and the effects of signal intensity changes are al-
ready considered by the NCR. Integrating the ICR was therefore
contraintuitive, as high field strength resulted in worse ratings
that did not fit to the outcome.

SIQR = (mean ([NCR, RES, ECR, FEC]‘*))(M) )

To balance the sensitivity to different quality measures while
ensuring that the necessary quality conditions are met, we ap-
ply an exponentially weighted averaging approach to the graded
quality ratings (range 0.5-10.5)—similar to the RMS but using the
fourth power and fourth root. This method allows well-rated im-
ages to contribute positively without overshadowing critical qual-
ity constraints. For more information regarding the weighting-
selection process, we direct the reader to the Methods section.

Sample normalization for outlier detection

So far, each image has been evaluated individually, enabling the
detection of outliers with very low resolution or high noise (e.g.,
those falling below a C rating, such as SIQR <70 rps). However,
to identify more subtle issues, such as mild motion artifacts, it
is necessary to assess deviations from the ideal quality expected
for a given MRI protocol within a specific sample. To achieve this,
we estimate the upper quartile of the SIQR percentage scores
from images acquired with the same protocol and apply a lin-
ear correction (a simple translation, as the values have already
been scaled according to the BWP). This normalization results in
a standardized SIQR, where values close to zero indicate optimal
protocol quality, while higher values highlight potential outliers.
To establish a general threshold for detecting quality issues, we
employed a receiver operating characteristic (ROC) curve analysis
combined with 2-fold cross-validation (splitting the dataset into
odd- and even-numbered files based on filenames). This approach
was validated using test samples with expert ratings, ensuring ro-
bust performance in identifying suboptimal images. The normal-
ized scores were processed using the “Check Sample Homogene-
ity” tool (described in the next section) and saved as a normalized
SIQR (nSIQR) score in the subject’s XML file and in a CSV table.

Software

The “Check Sample Homogeneity” tool (Fig. 4) in the CAT12 tool-
box supports a guided analysis of large datasets to detect and
exclude outliers in anatomy, preprocessing, and image quality
from analysis by estimating a sample-specific z-score. The tool
has been designed in an interactive format with the intention to
encourage users to get in touch with their data and carefully de-
cide on the inclusion/exclusion of the images from analyses. Arti-
facts can result in a systematic bias, often resulting in an under-
estimation of GM [7]. To ensure the validity of statistical analyses,
it is suggested that severe image quality-related outliers are ex-
cluded based on normative assessments provided by the toolbox.
The quality estimation is also available as the “Image Quality Es-
timation” SPM batch to process selected structural scans with a
fitting brain tissue segmentation (e.g., from SPM). The results for
each input image are stored in an XML file and can be used for
subsequent analysis steps and potential analysis in relation to ef-
fects of interest of a study (such as age).
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Figure 4: The “Check Sample Homogeneity” Tool in CAT12 for the MR-ART dataset grouped by the amount of motion (see D and E). (A) In the main
window, the user can select scans that are ready for analysis. The QC ratings, generated independently during preprocessing, are automatically loaded
from the corresponding XML files. Users can interactively explore data points to investigate deviating ratings by viewing the original image with its
segmentation overlay (B) or the preprocessing report (C) to remove outliers with image- and processing-related problems or atypical anatomical
features. Grouping of multiple scans allows the estimation of a sample-specific nSIQR score and z-scores that are added to the individual XML files
and stored as a CSV table. The normalization utilizes a scanning site variable to subtract the default protocol quality (defined by the upper quantile),

highlighting scans with motion artifacts as outliers (E; see also Fig. 6C, D).

Evaluation concept and data

The calibration and testing of our proposed measures were done
using simulated images from BWP [8, 37, 38] and the Cortical Ag-
ing Phantom (CAP) [39], as well as real data from IXI, ATLAS [40],
MR-ART [9], and a test-retest dataset (Table 1).

The BWP dataset consists of simulated data files of varying
noise, inhomogeneities, and resolution parameters, which are
encoded in the filenames. To create balanced and comprehensive
calibration and testing samples containing similar—but not
identical—cases, every second data point was assigned alter-
nately to each sample. The BWP calibration data consisted of all
odd files (ordered by filename) and were used to scale the quality
measures and estimate the weighted averaging described above.
The test subset (even files) was used to quantify the relationship
between quality ratings and segmentation accuracy. Moreover,
we used the BWP to further simulate typical brain extraction
and segmentation artifacts (e.g., by erosion/dilation of tissue
segments) to test the robustness of the quality measures in case
of critical data conditions (see Fig. 5). The CAP described in [39]
was used to test the effects of brain atrophy of up to 1 mm on
our quality measures.

Although simulated data enable basic evaluation under de-
fined conditions, real data are essential to investigate possi-
ble dependencies/biases. The measures were quantified in IXI,
ADHD200, and ATLAS datasets to test for possible effects of age,
sex, and lesions. Finally, the MR-ART dataset with 148 subjects,
each with 3 scans without light, with light, and with severe mo-
tion artifacts, along with available expert ratings as well as MRIQC
derivatives [13], was used to test the utility of our measures to sep-
arate images with motion artifacts and to validate the measures
against an established QC framework.

Additionally, we used the Tohoku test-retest (TRT) dataset,
which contains 126 T1-weighted scans [41]. All scans were pre-
processed, registered, and resliced to a high-resolution template
with 0.50 mm isotropic resolution. A median template was used
to remove outliers and to create the final ground-truth segmenta-

tion by averaging. Finally, we estimated the association of image
quality and scan time.

All evaluation scripts are available in the CAT distribution on
GitHub and require MATLAB with the statistical toolbox and curve
fitting toolbox to run. The required raw data of IXI, CAP, ADHD200,
ATLAS, and MR-ART are available from the project-specific web-
sites, as described in Table 1. The preprocessed data and the re-
organized images of the BWP(E) and the TRT are available on the
GigaScience repository, GigaDB [30].

Results

The quality scores were first evaluated on the simulated test data
to determine the accuracy of interference quantification and to
investigate how robust the measures are in cases of simulated
segmentation problems and aging. Furthermore, we used the IXI,
ADHD?200, and ATLAS datasets to study the effects of aging, sex,
brain size, and stroke lesion on our proposed measures of im-
age quality. Additionally, we evaluated the ability to detect images
with motion artifacts on the MR-ART dataset, tested the validity
of our measures against the MRIQC 0.16.1 derivatives, and demon-
strated the application in a test-retest scenario. All measures had
been standardized (see Fig. 3) and evaluated on the BWP before fo-
cusing on the averaged SIQR score. Of note, obvious subject/scan-
specific motion artifacts generally increase the scans’ rating for
about 1 grade, which corresponds to a decrease of 10 rps (and +0.5
grade/—5 rps for light artifacts), in comparison to the typical rating
achieved by most scans of the same protocol (see Fig. 7). Similar
to the Methods section, we focus here on the results pertaining to
SIQR and refer the interested reader to the Methods section for a
more detailed overview.

Simulated data

The evaluation on the BWP test dataset showed that most qual-
ity ratings have a very high correlation (Spearman’s p > .950, P
< 0.001) with their corresponding perturbation and a very low
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Table 1: Short overview of the used datasets

CAT12QC | 5

Dataset N Age (years)] Sex (% men) Sites Description

BWP 600 ~30 100% 1 Simulated dataset [8, 42] for basic definition (calibration: odd
files) and evaluation (test: even files) of the quality ratings,
with 5 levels of noise (1% to 9%), 3 different bias fields with 5
levels (20% to 100%), and 8 resolution levels with a voxel
length of 1 and 2 mm.

BWPE ~30 100% 1 BWP data with simulated skull-stripping and segmentation
errors (see Fig. 5) to test the robustness of our measures in
case of severe processing problems.

CAP 400 39.1-78.3 (70.7 + 5.4) 50% 1 Simulated atrophy dataset [39, 43] to test for side effects of
GM tissue atrophy that correspond to aging of about 100 years.

IXI 554 20-86 (48.5 +16.4) 44.8% 3 Brain aging sample to test the effects of age, brain size, and
sex (only scans with complete phenotypic data) [44].

ATLAS (R1.2) 304 NA NA 11 T1images of subjects with (masked/unmasked) lesions to test
the stability in case of severe structural changes [40]
(controlled access: [45]).

ADHD200 491 52.9 7 T1images of healthy subjects of the train dataset (site 2 of 8 is
only in the test dataset) [46].

MR-ART 148 % 3 18-75 (30.0 £ 12.8)  35.1% 1 Dataset without and with intended motion artifacts [9, 47].

TRT 6 (127) ~30 100% 1 Various magnetic resonance protocols with a scan time

duration from 30 seconds to 11 minutes on a 3T Philips
scanner [41]. The scans were selected based on differences in
scan time driven by resolution and parallel imaging (SENSE),
while ensuring the similarity of other MRI parameters (see
supplementary table S2)

correlation (Spearman’s p < |0.1]) with the other tested perturba-
tions (see table in Fig. SA, C). This suggests considerable specificity
of the proposed quality measures. The combined SIQR score also
showed a very strong association with the segmentation quality «
(Spearman’s p =-.916, P < 0.001) and brain tissue volumes (Spear-
man’s pcsg/amwnm = —/29/-.647/.805, Pespovywm < 0.001) (Fig. SB).
The root mean square errors (RMSEs) between the expected and
measured values of the SIQR were 3.133, 2.530, and 0.263 1ps for
the BWP test set, the BWP-derived segmentation error test set, and
the cortical atrophy phantom (CAP), respectively (Fig. 5D).

Most notable is the quantification of the image resolution,
where the simple voxel-based resolution rating RES did not work
well in interpolated data (i.e., as expected in 225 of 625 cases), re-
sulting in a lower correlation (Spearman’s p = .332) and a high
RMSE of 8.207 1ps. The edge-based resolution measure (ECR), on
the other hand, generally performed better (Spearman’s p = .585, P
< 0.001) but was strongly affected by noise (Spearman’s p = .631,
P < 0.001) and inhomogeneity (Spearman’s p = .158, P < 0.001)
compared with other scores. The tests with simulated segmen-
tation errors suggested that NCR and ICR were extremely robust
(Fig. 5E), whereas ECR and especially FEC were quite sensitive to
strong (i.e., 1 voxel) over-/underestimations of CSF and WM.

Real data

The real data analysis of IXI and ATLAS cohorts suggests that the
proposed quality measures were not affected by total intracranial
volume (TIV, TsiQr = .089, PSIQR = 0.559), age (rSIQR = -—.187, PSIQR =
0.079; Fig. 6A), sex (Mann-Whitney U test: U = 39,125, Z = 0.584, P
= 0.558), or stroke lesions in the ATLAS dataset (Fig. 6B), while sex
showed minor effects in IXI. Since IXI rather contains scans with-
out significant motion artifacts, it provides a useful estimate of the
typical overall variability in terms of the standard deviation of the
SIQR score with 1.625 1ps (Guys/HH/IOP = 1.629/1.606/1.641 1ps).
However, outliers with motion artifacts are often found in chil-
dren, as shown in the ADHD200 dataset (Fig. 6C), with an average

standard deviation of the SIQR scores of 2.078 1ps (sites 1, 3-7 =
3.543/1.578/1.493/4.061/1.528/1.314/1.0273 1ps).

The effects of motion artifacts were evaluated using the MR-
ART dataset (Fig. 7A). In order to detect motion artifacts, each
score was normalized (by subtracting the first quartile value to
consider the typical protocol quality), and an ROC was applied.
The measures were tested under 3 conditions, namely comparing
(i) no versus severe artifacts, (ii) no versus light + severe artifacts,
and (iii) no + light versus severe artifacts (Fig. 7B). The best ROC
thresholds to separate good from bad scans in the 3 groups were
4.20/1.90/1.55 rps for the nSIQR. The accuracy of the SIQR, as de-
termined by the ROC (an average over the 3 groups), was 0.902
and 0.899, with an area under curve (AUC) of 0.974 and 0.969 for
CAT12 and SPM, respectively. The failure cases where the measure
was not in accordance with the expert ratings are available in the
supplementary material.

Moreover, we have demonstrated the expected decrease of GMV
with aging and in relation to motion artifacts in the MR-ART
dataset for CAT12 and SPM25 segmentation (Fig. 7C-F). The re-
sults indicate that higher segmentation error (measured by the
K statistic comparing motion-free and motion artifact-containing
scans) and hence lower image quality may lead to underestima-
tion of GM and overestimation of WM volume.

We further tested the association of our measures with the es-
tablished measures from the MRIQC 0.16.1 [13] (see [9] for the pro-
cessing). The results are presented for selected MRIQC measures
in Fig. 8. SIQR was highly associated with a signal-to-noise ratio of
MRIQC, especially that of white matter (p =.927,P < 0.001), as well
as summary standard deviation of the background (p = —.937, P
< 0.001). For associations with all the measures from MRIQC, see
Supplementary Fig. S6.

Finally, we validated the proposed quality metrics using a scan-
rescan test where we inspected the difference in quality scores
and segmentation accuracy with regard to scanning time and
ground-truth image, respectively (Fig. 9). The expected improve-
ment of image quality was clearly observable in terms of sharper
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Figure 5: (A) The dependency of quality measures on manipulated levels of noise, inhomogeneity, and resolution using the BWP: NCR, ICR, ECR, and
FEC. (B) The SIQR integrates all these measures into 1 score and shows significant associations with segmentation quality (characterized by «) and the
rGMV based on CAT12. (C) Overall, our ratings show specific relationships to their corresponding BWP perturbations but not others and (D) small
RMSEs also in the case of simulated segmentation errors (E) or aging (F). Of note, the numerical grading system and percentage system are inversely
scaled, where -10 rps correspond to +1 grade and roughly correspond to the emergence of obvious motion artifacts.

x See the Supplementary Table S1 for the full table in C.

anatomical details and reduced noise. The « indices, relative gray
matter volume (rGMV), and SIQR scores confirmed these visual
observations but pointed out further interesting details. The noisy
short time scans S1 and S2 showed significantly lower «, worse
SIQR ratings, and smaller GM volumes, whereas the other scans
were highly comparable.

Here, we introduced a QC framework for structural (T1-weighted)
MRI data. We defined and validated various automated quality
ratings based on well-defined BWP image quality features, such
as noise, inhomogeneity, and resolution [8], and integrated them
into a single SIQR score to facilitate practical applications in
the context of clinical and cognitive neuroscience. We further
demonstrated that our measures (i) are robust to simulated
segmentation problems and cortical atrophy; (ii) are independent
of sex and brain size, showing only minor expected associations

with chronological age, as well as severe disease-related changes;
and (iii) allow the reliable assessment of motion artifacts within
a protocol. In artifact-free data, image quality typically varies
between 2.5 and 5 rps (0.25-0.5 grade), whereas light or strong
artifacts typically result in a reduction of ratings by 5 or 10
rps (equivalent to a 0.5 or 1.0 increase in grades), respectively.
T1-weighted images with low-quality ratings might show a
systematic underestimation of gray matter volume, first demon-
strated in the case of motion artifacts by [7]. Strongly affected
data should therefore be excluded from the analyses. In the case
of less severe artifacts, the quality rating might be included as
a covariate [17, 19] or using weighted least squares [18] during
statistical analyses. However, an empirical comparison of the
complex statistical effects of alternative approaches to account
for automatically generated (i.e., known) quality differences in
downstream analysis tasks is still lacking.

The proposed QC framework offers a simple and efficient ap-
proach to identify structural MRI scans that are suitable for the
prospective use in structural processing tools (especially within
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Figure 6: (A) The results of the structural dependency test in the IXI dataset showed that the SIQR measure is independent of age and TIV and only
slightly associated with sex (see the Methods section for other quality measures), with an average standard deviation 1.625 rps per site. (B) The results
from the ATLAS dataset suggest that severe structural changes in terms of lesions do not significantly affect the SIQR measure when comparing raw
versus masked images. (C) SIQR measurements in the ADHD200 dataset for children and young adults acquired by 7 different centers, including scans
with motion artifacts. (D) To identify outliers with motion artifacts (over multiple sites), a normalization by the typical protocol quality (defined by the
first quantile of the SIQR values per site) can be used, where scans with more than 5/10 rps ratings typically have light/strong motion artifacts,
respectively (see MR-ART dataset in Fig. 7). Note that our rating system is designed to assist in identifying cases that require further human

evaluation, depending on the needs of the study.

SPM/CAT12 framework) and brain imaging analysis in both clin-
ical and research settings. This was also confirmed in previous
studies [21, 22, 48] that evaluated the utility of earlier versions of
this QC framework.

In the following sections, we discuss further aspects of the de-
velopment of our SIQR measure and its subordinate quality mea-
sures (with regard to existing alternatives), their performance in
simulated and real data samples, and their potential for assessing
the quality of images from other sequences and modalities.

Various image quality frameworks estimate some of their qual-
ity metrics based on information extracted from the image back-
ground [13, 14, 49]. In contrast, our approach focuses on estimat-
ing quality only within the brain for 3 reasons. First, the back-
ground values in public datasets can be corrupted by various
defacing and skull-stripping routines [50, 51]. Second, the back-
ground may contain artifacts (e.g., motion artifacts from the jaw
or tongue) or unwanted properties (e.g., noisy backgrounds in
MP2RAGE) [36] that do not necessarily affect the brain, or con-
versely, the artifacts in the brain do not or are less likely to affect
the background. Third, the background does not provide infor-
mation about image inhomogeneity, tissue contrast, and spatial
anatomical resolution [52]. While certain artifacts may be more
prominently visible in the background [14], they are of interest to
the user only if they also affect the brain. Furthermore, the evalua-
tion of image quality within tissues must take into account struc-
tural aspects such as (i) the partial volume effect, where a voxel
contains tissue of more than 1 tissue class, and (ii) changes in

brain development and aging, such as tissue degeneration due to
white matter hyperintensities, small vessel disease, or perivascu-
lar spaces [53, 54]. Consequently, the proposed framework adapts
these regions of interest by applying specific thresholds and mor-
phological operations to minimize bias from age/disease, as we
have demonstrated in the IXI and ATLAS datasets. Moreover, the
proposed intensity-based measures are normalized by (minimum)
tissue contrast rather than signal intensity, as the separation be-
tween brain tissues, especially the GM and W)V, is essential for
segmentation and surface reconstruction [25, 55].

Our proposed individual quality subscores have largely been
established based on well-known image quality aspects of the
BWP, which was built to represent the large variability in image
quality of structural T1-weighted MR images [8, 56, 57]. By taking
into account these predominant aspects of image quality, we have
created ratings that are easy to understand, even without a tech-
nical background. The ratings were integrated into a single SIQR
rating to support the users during the evaluation process. To com-
bine the measures, we have used an RMS-weighted average (of the
grades) with a power of 4 rather than 2, to place greater emphasis
on the more problematic aspects of image quality. This is relevant
because effects of severe problems often cannot be compensated
by other factors (e.g., if there are severe motion artifacts, a much
higher image resolution typically cannot account for this).

In particular, SIQR is strongly predictive of segmentation ac-
curacy (quantified by the « measure) and the extracted GM vol-
ume, although its quantification is largely independent of struc-
tural features. Thus, SIQR can facilitate the estimation of image
quality-related variance in individual scans or samples, even for
nonexpert. Alternative quality control tools, such as MRIQC [13],
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Figure 7: (A) Example images from the MR-ART dataset [9] for 3 different conditions based on expert ratings splitting data into (no), (light), and
(strong) motion artifacts (MAs). (B) ROC curves when classifying these groups using SIQR (see the Methods section for ROCs of other quality ratings)
with high accuracy (ACC) and AUC. The thresholds (th) of the ROC were estimated on the nSIQR values and applied in a split-half design (run1 vs.
run?2). We tested 3 options in handling cases with light MAs, where the no versus strong test case was only possible in a smaller subsample (n = 167),
ignoring the controversial light cases; only 4 cases were misclassified (C; see the supplement for the failed cases for the 2 groupings with light motion
artifacts). To separate all motion cases, a threshold of about 5 rps worked best, whereas the separation of strong motion artifacts needed a higher
threshold of about 7 to 9 rps. In other words, scans with a rating of 5 to 10 rps lower than the typical quality of the protocol should be checked. (C, D)
We further evaluated the relative GM tissue volume change (in relation to aging) in percentage points (pps) of scans with motion artifacts compared to
the ones without for each subject processed by SPM and CAT12. As the MR-ART dataset only includes motion-free and affected scans, we estimated
the tissue changes in motion cases compared to the one without motion. The results suggest that the expected lower segmentation accuracy for lower
image quality leads to GM underestimation and WM overestimation, where motion artifacts of 10 rps are roughly comparable to a GM loss within 5
years. (E, F) The boxplot of the 3 expert-defined motion groups clearly showed the expected GM underestimation, WM overestimation, and SIQR
ratings in case of strong motion in SPM and CAT12.

9z0z Aenuer z| uo 1senb Aq g171.9£8/91 Lieib/aouaiosebib/es0 L 0 L /10p/a1o1ue/aoualosebib/woo dnooiwapede)/:sdijy woly papeojumoq



CAT12 quality ratings and MRIQC quality measures
Spearman correlation

0.9

0.8

0.7

0.6

05

measures
@
o
3

0.4

0.3

snr_total

snr_wm
summary_bg_p95
summary_bg_stdv
tpm_overlap_csf
tpm_overlap_gm
tpm_overlap_wm

0.2

0.1

snr_wm

snr_total
summary_bg_p95

summary_bg_stdv
tpm_overlap_csf
tpm_overlap_gm
tpm_overlap_wm

measures

Figure 8: Spearman correlation coefficients between expert rating (i.e.,
expert rating group: 1, no motion; 2, light motion; 3, severe motion), AV
(dvol_rel_CGW, volume change in relation to motion-free scan), «
statistic (estimated with respect to the motion-free scan and averaged
across all tissues), CAT12 quality ratings (NCR, ICR, res_ECR, FEC, and
the weighted average SIQR), and selected MRIQC quality measures in
the MR-ART dataset [9] (for full table, see Supplementary Fig. S6).

might be challenging for novices due to nonstandardized mea-
sures that require substantial user experience. Moreover, a nor-
malization using BWP quality features also enables a direct com-
parison across protocols (see test-retest example), although cau-
tionis advised, as the results may be subject to bias by (i) our focus
on a segmentation-centered definition of quality, (ii) the popula-
tion under study, and (iii) project-specific needs or considerations
(e.g., optimized magnetgic resonance [MR] parameters to image
specific structural changes rather than preprocessing).

Identification of scans with data anomalies and
artifacts

The proposed framework is part of the CAT12 preprocessing and
utilizes the CAT12 segmentation, but it could also be used as
an independent SPM batch with other segmentation algorithms
(e.g., from SPM) [33]. Segmentation routines are widely used for
structural brain analyses and have undergone intensive testing
to be valid, accurate, and robust for a variety of protocols, individ-
ual anatomies, and demographics (e.g., [25, 33, 35]), making them
ideal for image quality analysis. By focusing on general global
aspects of the scan rather than local ones, problematic struc-
tures and areas such as partial volume effect voxels or WM le-
sions can be omitted, allowing precise, robust, and largely consis-
tent results, even in case of severe classification faults (e.g., failed
skull-stripping or misclassification), as tested here under simu-
lated conditions.

Although SIQR could be used for fully automatic outlier detec-
tion (see also [21] and [50]), we believe that the huge variability of
the type of artifacts, their regional occurrence, and their impact
on image processing still require study-specific knowledge and, if
possible, a short user inspection—for instance, when locally lim-
ited or mild artifacts affect regions that are not relevant to the
study (e.g., if the study focuses on frontal regions, cerebellar ar-
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tifacts from jaw movements are acceptable) or whenever lower
preprocessing accuracy is acceptable (e.g., for local alignment of
brain surfaces or atlases for other modalities).

Multivariate outlier detection schemes that are typically ap-
plied based on the processed data of a sample in the normal-
ized feature space, using similarity analysis of normalized GM
data (e.g., the Gram matrix or kernels) in CAT12 (see Software sec-
tion), can be used to detect outliers with preprocessing problems
or highly deviating anatomy. However, the proposed image qual-
ity assessments are specifically designed to measure differences
of image quality (in native space) rather than segmentation ac-
curacy (in normalized space) or anatomical properties, such as
stroke lesions, and can therefore be used in addition to previously
mentioned outlier detection schemes to identify cases where im-
age artifacts could bias analysis.

The role of subordinate quality ratings

While the SIQR composite is sufficient for most analyses, our
framework facilitates deeper insights, providing more specific
subordinate ratings.

The NCR is not only a very robust measure, as it can be quanti-
fied in different regions, but also very sensitive to motion artifacts,
and it gives the most relevant values when the image resolution
is adequate (<1.5 mm).

The ICR had little to no impact on detecting problematic data
(e.g., when testing for segmentation quality « in the BWP or mo-
tion artifacts in MR-ART), as inhomogeneities tend to describe
more protocol/scanner-specific aspects and can be corrected
fairly well in most protocols [58]. Increased inhomogeneities typ-
ically occur in high-field scans without protocol-specific correc-
tion schemes. Although possible disadvantages are generally out-
weighed by superior resolution and higher signal-to-noise ratio,
bias correction schemes in preprocessing routines can fail in some
cases [59]. It is therefore recommended to retain this measure in
a general rating.

The RES rates the voxel size in terms of how good structural
features can be imaged. Nevertheless, structures can still be bi-
ased by interpolation [10], blurring, noise, or motion artifacts. A
real quantification of the sharpness of anatomical structures by
our ECR is therefore essential, although it is strongly affected by
noise and the segmentation quality compared to other ratings.

The FEC represents our adaptation of surface topology [60,
61]. The measure showed a strong association with noise levels
and supports the identification of motion artifacts. However, com-
pared to NCR, it is noisier and depends strongly on the input seg-
mentation and MR protocol. Data with a low spatial resolution or
faulty/simplified segmentations with a limited number of details
can have fewer defects and result in better ratings. Nevertheless,
FEC presents a good extension to the NCR and ECR measurements.

In contrast to MRIQC [13], which provides a variety of raw un-
scaled measures (with reversely signed scored ones among them),
we tried to establish measures that reflect the known specific
perturbances and are directly interpretable by applied scientists.
Nevertheless, raw quality measures are also available in the XML
files, allowing advanced users to perform detailed inspections. All
QC measures can be used in statistical analyses or machine learn-
ing models according to the study needs [50].

Evaluation in simulated and real data

Simulated data allow basic validation of methods under expected
conditions and comparison with actual ground-truth results. The
BWP is a standard for evaluating structural brain image pre-
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Figure 9: An illustrative example of the test-retest sample analysis showing 6 images with an increasing scan time and image quality. The top and
bottom rows represent the intensity-normalized T1 images and the CAT12 segmentation, respectively, with increasing segmentation accuracy in
longer scan times when compared to the average ground truth (created from the best 127 test-retest images). The rGMYV is slightly underestimated in

low-quality data.

processing [56, 57] and was used here to define and normal-
ize our quality measures and to test their relationship with the
segmentation accuracy. Due to the robustness of CAT12, we de-
cided to simulate extreme segmentation problems. The results
showed high stability for the NCR and ICR measures, but high
susceptibility to error for the ECR and FEC in the case of severe
over/underestimation of tissue segments, as both depend on the
correct definition of the GM/WM boundary. In the simulated ag-
ing phantom [39], the results showed small systematic but negli-
gible changes in the quality measures, which could also be due to
small differences in the simulated images (see bias differences in
Fig. S5F). Since a lot of our tests relied on BWP, which is limited in its
ability to simulate artifacts or new protocols, such as MP2RAGE,
new frameworks such as TorchlIO [62] present a possible next step
for future tests. Nevertheless, an empirical validation on real MRI
datasets was necessary to demonstrate the validity and practi-
cal benefits of the introduced quality assessments and to avoid
overadaptation to synthetic data. Therefore, we used the IXI and
ATLAS datasets to demonstrate that SIQR is unaffected by age,
sex, head size, or severe structural disease-related changes. In MR-
ART, we tested the ability to identify different degrees of motion
artifacts and the effects on gray matter segmentation in aging.
Overall, we demonstrated the robustness and applicability of our
SIQR measure.

Shortcomings and outlook

The QC measures proposed in this study were designed to be in-
dependent of segmentation accuracy and were tested in a va-
riety of protocols. However, useful results can only be expected
for valid segmentation inputs (where we focus on CAT12), and
highly specific T1-weighted protocols may result in unexpected
ratings. Other modalities, such as T2-weighted, proton density-
weighted, or fluid-attenuated inversion recovery (FLAIR) images,
can be assessed, but the dependance of the SIQR on the sepa-
rability of CSF, GM, and WM may result in low-quality scores. In
addition, our ratings are not designed to assess functional or dif-
fusion data, where more specific tools are available [12, 15, 63].
Although such data can also be used for tissue segmentation, the
low GM-WM contrast is challenging, and the resulting segmenta-

tions or surfaces are less accurate and possibly biased compared
to typical T1-weighted images [33]. Itis important to note that pre-
processing tools are designed to work reliably even on problematic
datasets, and results from these images can often still be used, al-
though these should be interpreted with more caution. Moreover,
scanner-specific changes, such as geometric distortion, have not
been considered. Consequently, our measures are not designed to
monitor scanner properties that require real MRI phantoms [64,
65].

In addition, our scan-rescan results demonstrated instances
of comparable segmentation quality, with up to 40% faster scan
times. This is particularly relevant for clinical MRI, where cost-
effectiveness (short scan times for high patient throughput)
presents an essential aspect, and images of adequate, but not
exceptional, quality are appropriate for diagnosis [66, 67], simul-
taneously reducing both financial and environmental costs [68].
On the other hand, using only adequate image quality for certain
projects does not eliminate the need for cutting-edge resolution
[59], although improperly enhanced image resolution (e.g., 0.5 x
0.5 x 1.5 mm for 1.5 Tesla systems) often leads to increased noise
or parallel imaging artifacts that can disturb preprocessing. It is
therefore advisable to pilot modified protocols for the preprocess-
ing pipelines you plan to use or follow the established standard
protocols (e.g., ADNI [69] and HCP [70]).

Conclusion

Our fully automatic quality control framework within the
SPM/CAT12 ecosystem enables a standardized, accurate, and ro-
bust evaluation of large heterogeneous datasets to detect outliers
with inadequate image quality using a single-image quality rat-
ing: SIQR. Its flexibility, low cost, and simplicity support a wide
range of applications and can provide a valuable contribution to
quality assurance in clinical practice and research.

Methods

All the statistical analyses were performed in MATLAB 2024a.
The associations between different metrics were calculated us-
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Figure 10: (A) The relation between the classical NCR and contrast-to-noise-ratio (CNR) (A) on the 1-mm BWP data with 1% to 9% noise and 20% to
100% bias. (B) The advantage of the CNR’s linear scaling is clearly visible in its relationship with the preprocessing quality represented by the « value,
where it allows for a better separation in the range of lower image and segmentation quality. (C) The nonlinear relation between NCR and the «
statistic (average of all brain tissues segmented by CAT12), on the other hand, enables a finer separation of high-quality data, which is less useful for

detection and quantification of outliers.

ing Spearman’s rank correlation (unless stated otherwise), and the
Mann-Whitney U test was used to compare the quality metrics
between men and women.

The following section provides a more technical introduction
to our quality measures.

Normalization and scaling

As segmentation and surface reconstruction rely heavily on the
contrast between tissues, the normalization by contrast rather
than the signal intensity allows a better correspondence between
image and processing quality. Moreover, contrast-to-measure ra-
tios rather than measure-to-contrast ratios were used as they sup-
port linear scaling to the interferences of the BWP and a linear
relationship to the « values of CAT (Fig. 10).
Simple linear scaling function:

QRgrade =p (QMgradea BQMgradev WQMgrade)
= max (.5, min (10.5, (QMgrage — WQMgrade) /

(BQMgrade - WQMgIade) *6+.5 ))

to transform the original quality measure QM into a quality rating
QR, with BQM as the best (95 rps, grade 1) and WQM (45 rps, grade
5) as the worst regular value.

Noise

The first quality rating characterizes image noise, defined here as
the NCR, to describe how well the tissue can be locally separated
independent of the protocol-specific tissue contrast. The estima-
tion was specified as the minimum of the average local standard
deviation, o, of the bias-corrected image Cy. within the optimized
WM and CSF regions WMe and CSFe. The values were normalized
by the minimum tissue contrast c,,;, and scaled by the results of
the linear fit:

NCR = B(min(6 (Cy(CSFe)), & (Coe (WMe))))/Coupn. 0.0183,0.0868)  (SE1)

with 0.0130 as the best and 0.0682 as the worst rating of the un-
scaled measure obtained for the BWP train dataset. For data anal-
ysis, the bias-corrected image Cy. allows for a more meaningful
characterization of the local varying noise level than the original
image, since it considers processing problems in areas with low
signal intensity and increased noise. The local standard deviation

o was estimatedina 5 x 5 x 5 voxel neighborhood of a voxel and
averaged to reduce the influence of remaining inhomogeneities.

The CSF and WM regions, rather than the background, were
used because the background can contain interferences that do
not affect the brain [6, 36] or could be affected by anonymization
of subject features by defacing or brain extraction (Fig. 2A). CSF
and WM are beneficial for noise estimation compared to the GM
because they (i) cover relatively large and homogeneous areas and
(ii) are less affected by partial volume effects and locally vary-
ing tissue contrast (e.g., by myelination). However, using only CSF
regions often failed in younger subjects and low-resolution data,
while the exclusive use of WM led to age-related effects caused
by WM lesions or small vessel disease or perivascular spaces. The
regions were optimized by an erosion step and additional tissue
thresholds to avoid side effects by partial volumes, segmentation
method, or WM lesions in elderly subjects that are quite simi-
lar to noise or artifacts (Fig. 2B). The minimum tissue contrast
Cmin between CSF, GM, and WM was used because a greater GM-
WM contrast led to problems in detecting the CSF-GM and CSF-
background boundaries.

Inhomogeneity

In order to assess intensity inhomogeneity in images (often re-
ferred to as bias), the coefficient of joint variation (CJV) [52] proved
to be one of the most suitable measures [58]:

CJV = (0(Cem) + o (Cwm))/ It (Com) + w(Cuna)l

However, since it is known that the GM is strongly influenced
by partial volumes and locally different GM intensities [53], only
the standard deviation o of the WM is determined here. Similar
to the NCR, the minimal tissue contrast is used rather than the
GM-WM contrast. To remove noise-driven variance, a Laplacian
filter with a Dirichlet boundary condition is applied in the WMe
area, resulting in a locally averaged image Cs, which was used to
estimate the ICR:

(SE2)

ICR = B(0 (Cs(WMe))/Cpin, 0.2270, 1.3949)  (SE3)

Since most methods are able to correct strong inhomogeneities
almost without loss of segmentation accuracy (e.g., approach X in
Fig. 1B) [58], a weaker weighting was used. The worst BWP inho-
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Figure 11: The effects of the simulated reduced resolution by resampling (downsampling to low resolution, followed by upsampling to original
resolution) and Gaussian smoothing on the segmentation accuracy (quantified by ) for the ECR resolution measure. Quantifying only by voxel
resolution (RMS resolution score) would give the same value (grade 2 for 1-mm data) for all test cases (results for the BWP with 1% noise, 20%
inhomogeneity field A, and isotropic 1-mm resolution). It is also obvious that there is a large step between the original resolution and the first
resampled resolution, which describes the general information loss of data resampling and would be different in real data or if input data with a
higher ground-truth resolution were used (i.e., test bias). In addition, quantification in low-resolution data (below 2 mm) becomes increasingly difficult

due to the highly folded and thin cortical band (sampling theorem).

mogeneity level describes a grade C (see Fig. 3) that can be already
measured in 3 Tesla data without protocol-based corrections.

Resolution

The spatial resolution of MRI images plays an important role in
obtaining meaningful representations of anatomical structures.
For the general assessment of voxel volume and proportion in a
single value, we used the RMS notation to define the RES:

RES = g (((Xz +y2 4 22) /3)1/2

,0.5, 2.5) (SE4)

As a consequence of this definition, outliers with exception-
ally low resolution in 1 of the 3 dimensions were weighted much
higher than outliers with high resolution, resulting in an asym-
metric evaluation where similar (isotropic) resolutions are pre-
ferred. The quality range was arbitrarily determined to character-
ize typical resolutions, with a simple scaling step size of 1 grade
(10 rps) for another 0.5 mm, with 0.5 mm as an excellent result
and 2.5 mm as the lowest-quality limit close to the average corti-
cal thickness in humans.

For the principal evaluation, we tested RES by reducing and
reinterpolating the tissue label map of the BWP to quantify the
loss of information by Cohen’s « [31]. RES yielded a higher Spear-
man’s correlation coefficient than the simple voxel mean RESM
(pres = 0.994; presy = 0.965; with RESM = B((x + ¥ + 2)/3, 0.5, 2.5).
Although RES provides a good description of resolution under nor-
mal conditions, it has the major limitation that it does not quan-
tify the true anatomical level of detail (i.e., how well fine struc-
tures are defined and how sharp the boundaries are).

The ECR is the average gradient V of the GM/WM boundary
(outlined by the segmentation and masked for extreme gradients,
e.g., between CSF and WM and blood vessels) and normalized by
the minimum tissue contrast and scaled similarly to the RES rat-
ing. It allows an evaluation of structural resolution independent
of resampling or smoothing.

ECR = 8 (VWM, 0.0202,0.1003)  (SE5)

To test the quantification of anatomical rather than image
resolution, spatial details were removed by resampling (down-
sampling to 1.25:0.25:3.00 mm and resampling to 1.00 mm) and
smoothing (0:0.25:3.00 mm) a BWP image with 1% noise, 20% in-
homogeneity of field A, and 1-mm resolution. The parameter test
range was defined by the resolution of the BWP, the minimum
smoothing resolution (0.2 mm for 1.0-mm data), and the average
cortical thickness of 2.5 mm. The resulting images were then seg-
mented to quantify changes using Cohen’s «. In both cases, the
final voxel resolution remains constant, so that the voxel-based
RMS resolution measurements are identical even though the im-
ages become blurred and « decreases (see Fig. 11). In contrast,
our new ECR measure allows quantification of both test cases, al-
though quantification of GM/WM edge strength and tissue con-
trast introduces further variance (r > 0.98, P < 7e-07).

However, there are several limitations of the measure itself,
but also of the test design: (i) the BWP is limited in its anatom-
ical details, supporting only 1-mm resolution with some partial
volume effect; (ii) linear/spline resampling and smoothing affect
the measures differently; and (iii) « only quantifies segmenta-
tion accuracy, but not the quality of more complex surface re-
construction (e.g., Hausdorff distance to the gold standard sur-
face) that could be used. Nevertheless, ECR already represents
a significant step forward in quantifying image detail in real
data.

Surface topology

In order to approximate the surface topology in a reasonable
time, the FEC was estimated at a resolution of 2 mm. The whole-
brain WM surface was used rather than the typical neocortical
hemispheres of most surface pipelines. To account for partial vol-
ume effects at the lower resolution, 2 WM surfaces were gen-
erated at thresholds of 0.25 and 0.75. As we observed more de-
fects in children due to the thin developing WM structures, we
used a maximum filter to extend and stabilize the surface cre-
ation.

FEC = B (EC, 130,470) (SE6)
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where the Euler characteristic (EC) is defined as EC = V —
E + F with V as number of vertices, E as the number of
edges, and F as the number of faces of the created brain sur-
face.

Averaging

To obtain a meaningful composite measure of SIQR, we tested
the mean, median, maximum, and 4 variants of the exponen-
tially weighted averages with regard to their performance on the
BWP and MR-ART dataset (Spearman’s correlation between tis-
sue volume/k and SIQR). To quantify the effect of interferences,
we estimated the volume difference AV and the « value to the
artifact-free case (averaged across all tissue classes), where vol-
ume changes and « statistics should be highly associated with
the quality rating (Supplementary Table S2). We finally selected
the power 4 function as it is more sensitive to outliers.

Availability and Requirements

Project name: Quality Metrics of the Computational Anatomy
Toolbox (CAT12)

Project homepage: https://neuro-jena.github.io/cat,
//github.com/ChristianGaser/cat12

Operating systems: Linux, Mac OS, Windows
Programming language: MATLAB

Other requirements: Statistical Parametric Mapping (SPM) https:
//www.fil.ion.ucl.ac.uk/spm/, https://github.com/spm

License: GNU GPL version 2 or higher

RRID:SCR_019184

Processing was done under Mac OS using MATLAB 2024a, SPM25,
CAT12.8.2 R2166-R2890 (segmentation), and CAT12.9 R2890 (qual-
ity control).

https:

Availability of Supporting Source Code and
Requirements

All additional supporting data and evaluation scripts are available
in the GigaScience repository, GigaDB [30]. The framework is a part
of the CAT12 toolbox [23, 24], which is part of SPM25 [26, 27].
Although SPM and CAT do not require additional toolboxes, the
code used to generate the results and figures is available in the
“catQC” subdirectory of CAT12 and the GigaScience repository and
requires MATLAB 2024 or later with the “Statistics and Machine
Learning Toolbox” and the “Curve Fitting Toolbox.”

Project name: Quality Metrics of the Computational Anatomy
Toolbox (CAT12)

Project homepage: https://neuro-jena.github.io/cat,
https://github.com/ChristianGaser/cat12

License: GPL-2.0 license

SciCrunch: RRID:SCR_019184

System requirements

Operating systems: Linux, Mac OS, (Windows)

Programming language: MATLAB

Package management: SPM25: https://www.fil.ion.ucl.ac.uk/spm/,
https://github.com/spm

CAT12: https://neuro-jena.github.io/cat,
https://github.com/ChristianGaser/cat12

Hardware requirements: Computer with more than 4 GB RAM
that supports MATLAB
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Additional Files

Supplementary Fig. S1. (A) Boxplots of different averaging func-
tions on the expert grouping of the MR-ART dataset. Higher pow-
ers allow the outliers to be stronger and result in more appropriate
ratings. (B) Higher powers also result in a more linear relationship
between the image quality and segmentation quality « (estimated
for all scans with the motion artifacts of a subject in relation to
their motion-free scan). (C) Pearson’s correlation plots of different
combined ratings with different powers and the average volume
loss (subplot 1 on the BWP and 2 on MR-ART) and « loss (sub-
plot 3 on the BWP and 4 on MR-ART) and for a simple mean of
volume and « loss in both cases (subplot 5). The black line in-
cludes all measures; the colored lines present all cases while leav-
ing out one of the measures. The combination of NCR+res_RMS
represented our classical IQR rating that was now extended by
the edge-constrast ratio (res_ECR) and the fast Euler character-
istic (FEC). In both cases, we observed that the inhomogeneity-
to-contrast ratio (ICR) was contraindicative in describing the im-
age quality, as higher scan quality is mostly driven by low noise
and high resolution that are generally better in high-field scans,
whereas the higher bias can be corrected quite well by state-of-
the-art approaches such as SPM or CAT12.

Supplementary Fig. S2. We simulated the effects of segmentation
accuracy for brain extraction problems (A) and for tissue over-
and underestimation (B). Effects of skull-stripping problems are
shown as lines in C, while the segmentation problems are shown
as a scatterplot. Our quality scores are almost unaffected by se-
vere skull-stripping problems (x < 0.6), as even small regions are
sufficient for global estimation. Tissue classification errors are
more challenging, even if the reduced accuracy is quite small, be-
cause the contrast estimation is biased. In general, problematic
cases tend to underestimate the image quality, which indirectly
helps to identify serious preprocessing problems.
Supplementary Fig. S3. Changes in current quality scores (A) for
the phantoms presented in Rusak et al. (2022) (B), which simu-
lated neocortical atrophy of up to 1 mm in 20 subjects from the
ADNI database, where a 0.01-mm cortical loss represents 1 year
of healthy aging. As only the neocortical thickness is changed (C),
similar outcomes in the measures are expected regardless of the
simulated atrophy rate. However, the slightly different inhomo-
geneity and noise pattern in the CSF could introduce further bias
in the evaluation.

Supplementary Fig. S4. Changes of all quality ratings (NCR, ICR,
ECR, FEC, and SIQR) and the relative GM volume (tGMV) for aging
(left), total intracranial volume (TIV, center), and sex (right).
Supplementary Fig. S5. Changes of all quality ratings (NCR, ICR,
ECR, FEC, and SIQR) in aging (A) and grouped by the expert rating
(B). (C) shows the ROC analysis of each quality rating to separate
the expert rated motion groups. The change of the relative GM vol-
ume (rGMV) for aging is shown in (D).

Supplementary Fig. S6. Spearman’s correlation coefficient matrix
representing the associations between CAT12 and MRIQC quality
measures in the MR-ART dataset (Narai et al. 2022), as well as
age, sex, groupO (i.e., scan name/condition, e.g., instructed mo-
tion), group (final expert rating), relative CSF/GM/WM volume
(rCSFV/rGMV/TWMV), AV (dvol_rel CGW, volume change in rela-
tion to motion-free scan), and « statistic (estimated to the motion-
free scan and averaged over all tissues).

Supplementary Fig. S7. Example slice of the 4 false-positive cases
from the MR-ART datasets that failed in the outlier detection in
no vs. severe artifacts. They were classified by our rating as se-
vere motion cases, whereas experts assessed them as motion-free.
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There was 1 false-negative case in the separation for no vs. severe
artifacts.

Supplementary Fig. S8. (A) Example slices of the false-negative
cases from the MR-ART dataset (35 of 42) that failed in the outlier
detection in no vs. slight/severe artifacts and were classified by
our measure as acceptable but failed in the expert grouping (EG)
with a light (EG = 2) or severe (EG = 3) motion artifact. (B) Exam-
ple slices with false-positive cases from the MR-ART dataset that
failed in the outlier detection in no vs. slight/severe artifacts and
were classified by our measure as unacceptable but as motion-
free by the expert.

Supplementary Fig. S9. (A) Example slices with false-negative
cases from the MR-ART datasets that failed in the outlier detec-
tion in no/light vs. severe artifacts and were classified by our mea-
sure as acceptable (no/light motion) but labeled as severe (EG = 3)
by the experts. (B) Example slices with false-positive cases from
the MR-ART dataset (35 of 47) that failed in the outlier detection in
no/light vs. severe artifacts and were classified by our measure as
unacceptable (severe motion) but as artifact free (EG = 1) or with
slight motion artifact (EG = 2) by the expert.

Supplementary Table S1. Spearman correlation coefficients with
p-values in the upper and lower part of the table, respectively.
Supplementary Table S2. Parameters of the full Tohoku dataset
with the selected scans.

Abbreviations

AUC: area under curve; BWP: Brain Web Phantom; CAP: Corti-
cal Aging Phantom; CAP: Cortical Atrophy Phantom; CAT: Com-
putational Anatomy Toolbox; CJV: coefficient of joint variation;
CSF: cerebrospinal fluid; ECR: edge contrast ratio; FEC: full-brain
Euler characteristic; FLAIR: fluid-attenuated inversion recovery;
GM: gray matter; ICR: inhomogeneity contrast ratio; MRI: mag-
netic resonance imaging; NCR: noise contrast ratio; nSIQR: nor-
malized structural image quality rating; QC: quality control; QM:
quality measure; QR: quality rating; RES: resolution score; rtGMV:
relative gray matter volume; RMS: root mean square; RMSE: root
mean square error; ROC: receiver operating characteristic; rps:
rating points; SIQR: structural image quality rating; SPM: Statis-
tical Parametric Mapping; TIV: total intracranial volume; TRT: To-
hoku test-retest; WM: white matter.
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