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Abstract
Lifestyle may be one source of unexplained variance in the great interindividual variability of the brain in age-related struc-
tural differences. While physical and social activity may protect against structural decline, other lifestyle behaviors may be 
accelerating factors. We examined whether riskier lifestyle correlates with accelerated brain aging using the BrainAGE score 
in 622 older adults from the 1000BRAINS cohort. Lifestyle was measured using a combined lifestyle risk score, composed 
of risk (smoking, alcohol intake) and protective variables (social integration and physical activity). We estimated individual 
BrainAGE from T1-weighted MRI data indicating accelerated brain atrophy by higher values. Then, the effect of combined 
lifestyle risk and individual lifestyle variables was regressed against BrainAGE. One unit increase in combined lifestyle risk 
predicted 5.04 months of additional BrainAGE. This prediction was driven by smoking (0.6 additional months of BrainAGE 
per pack-year) and physical activity (0.55 less months in BrainAGE per metabolic equivalent). Stratification by sex revealed 
a stronger association between physical activity and BrainAGE in males than females. Overall, our observations may be 
helpful with regard to lifestyle-related tailored prevention measures that slow changes in brain structure in older adults.
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Abbreviation
ISCED  International standard classification of education

Introduction

Structural brain changes during normal aging comprise 
decreases in gray matter (GM) and white matter (WM; 
Fjell and Walhovd 2010). Interestingly, some older indi-
viduals experience strong and early manifestations (accel-
erated brain aging), while others of comparable age do not 
experience changes expected at that age [decelerated brain 
aging; (Bartrés-Faz and Arenaza-Urquijo 2011; Ziegler 
et al. 2012)]. As this high interindividual variability can-
not be fully explained by chronological age (Jockwitz et al. 
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2017; Stern 2009, 2012), other factors that provide potential 
explanatory insight have come into focus, one of them being 
lifestyle.

According to the seed and soil model (McDonough and 
Allen 2019) neurocognitive disorders are only developed, 
if pathological processes such as cell death and accumula-
tion of neurofibrillary tangles (the seed) meet an unfavorable 
neuronal environment (the soil). Unfavorable neuronal envi-
ronments can be health conditions accompanying normal 
aging such as cardiovascular disease or infections, but also 
behavior such as a risky lifestyle (McDonough and Allen 
2019). In contrast, a protective environment, e.g., healthier 
lifestyle such as higher physical activity and social integra-
tion, may promote a more resilient soil and neuroprotection 
(Anaturk et al. 2018; Arenaza-Urquijo et al. 2015; Bittner 
et al. 2019; Fratiglioni et al. 2004; McDonough and Allen 
2019). For example, socially integrated Alzheimer’s dis-
ease patients show higher cognitive stability compared to 
not integrated patients, even when suffering from a simi-
lar degree of pathology (Bennett et al. 2006). Furthermore, 
social network size correlates positively with amygdala 
volume in humans (Bickart et al. 2011). Likewise, higher 
physical activity, especially in older adults, has repeatedly 
been associated with better cognitive performance (Col-
combe and Kramer 2003; Erickson et al. 2007; Hughes and 
Ganguli 2009; Kramer et al. 1999, 2003; Voelcker-Rehage 
et al. 2010) and preservation of GM volume (Colcombe 
et al. 2003; Erickson et al. 2011). Older adults engaging 
in physical activity training showed increased hippocam-
pal volume (Erickson et al. 2011) and more efficient use of 
functional brain networks (Colcombe et al. 2004; Voelcker-
Rehage et al. 2011). Recently, lifespan physical activity has 
been associated with favorable ratios of brain metabolism 
markers in magnetic resonance imaging (Engeroff et al. 
2019). This hints even further at physical activity being a 
factor for promoting a more resilient neuronal environment. 
In contrast, smoking seems to be associated with cortical 
thinning in prefrontal and temporal regions (Karama et al. 
2015) and decreased GM density within cingulum, precu-
neus, thalamus, and precentral gyrus (Almeida et al. 2008). 
In addition, excessive alcohol consumption can lead to seri-
ous neurological diseases, e.g., Korsakow syndrome (de la 
Monte and Kril 2014) and is associated with reduced GM 
and WM volume and density (Paul et al. 2008; Pfefferbaum 
et al. 1995; Topiwala et al. 2017) in alcohol-dependent as 
well as non-dependent individuals (Mukamal at al. 2001).

Most previous studies focused on specific effects of a 
single lifestyle variable on brain structure and function. In 
real life, however, individuals engage in a combination of 
lifestyle behaviors, e.g., physical exercise and afterwards 
meeting friends (social integration) while drinking a beer 
(alcohol consumption). Only few studies investigated the 
effects of lifestyle on brain structure and function or on 

cognition in a multidimensional way. For example, Floel 
et al. (2008) found that the combination of exercise, dietary 
habits, BMI, smoking and alcohol intake was a better pre-
dictor for memory performance than the individual lifestyle 
behaviors. In a previous study, we developed a combined 
lifestyle risk score reflecting individual combinations of the 
above described daily lifestyle behaviors, with higher val-
ues reflecting more risky behavior (e.g., high smoking and 
alcohol consumption, low social integration and physical 
activity), whereas lower values indicate protective combina-
tions (Bittner et al. 2019). We showed that higher combined 
lifestyle risk was associated with brain atrophy, e.g., more 
alcohol consumption combined with low physical activity 
was associated with structural decreases in the premotor 
region. From the perspective of the seed and soil theory, it 
may further be concluded that combination of several risky 
lifestyle factors may provide an even more unfavorable soil 
for the development of alterations in brain structure than 
the presence of one factor alone. Based on these findings, it 
might thus be assumed that combined risky lifestyle leads to 
accelerated brain aging, accompanied by decreases in cogni-
tive performance. Non-linear effects and covariates such as 
sex or education as these affect not only brain phenotypes, 
but also lifestyle habits and the association between both 
are of additional relevance (Cullen et al. 2012; Fratiglioni 
et al. 2004; Gur and Gur 2017; Kramer and Colcombe 2018; 
McKenna et al. 2003; Mukamal et al. 2001).

However, we still do not know enough about which 
factors or behaviors predict the size of the gap between a 
specific chronological age and the actual manifestation of 
the individual aging process. To capture this manifestation, 
biological age of the brain, estimated from structural brain 
scans, may be more informative and precise than chrono-
logical age. To measure these MRI-based brain-aging pat-
terns, Franke et al. (2010) developed a machine-learning 
framework, which uses the most relevant voxel-wise GM 
information to aggregate the complex underlying multidi-
mensional alteration patterns of brain aging into one single 
value, the estimated brain age. The difference, i.e., the gap, 
between brain age as estimated from MR images and true 
chronological age (Franke et al. 2010) is then the Brain Age 
Gap Estimation (BrainAGE) score. BrainAGE is positive if 
aging patterns observed via MRI appear older than expected 
based on chronological age (accelerated brain aging), and 
negative if they appear younger (decelerated brain aging). 
BrainAGE and several other MRI-based brain age predic-
tion models have been established as a meaningful imaging 
biomarker to study the prediction of future brain aging pat-
terns and their longitudinal trajectories (Cole and Franke 
2017; Cole et al. 2019; Franke et al. 2012; Gaser et al. 
2013), cognitive decline and disease severity (Franke et al. 
2012). At the same time, BrainAGE is widely applicable and 
highly accurate to study the high interindividual variability 
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in structural brain aging (Cole and Franke 2017). Recent 
studies found MRI-predicted brain age even to be associ-
ated with relevant genetic variants for cortical thickness and 
encoding for tau protein (Jónsson et al. 2019; Ning et al. 
2020), even though these variants only explained 11% of the 
variance at most within the gap between estimated brain and 
chronological age. In contrast, other brain age predictions 
have been reported to be not associated to genetic variants 
in general, but only specific brain compartments, which in 
turn were partly related to modifiable risk behavior, e.g., 
smoking (Smith et al. 2020).

Hence, the current study aimed at examining whether 
highly complex, multivariate lifestyle behaviors can partly 
predict the deceleration or acceleration of brain aging 
(reflected in the BrainAGE score) in the 1000BRAINS 
cohort of “normal” aging older adults (Caspers et al. 2014). 
Here, BrainAGE allows conducting straightforward quantifi-
cation of how much variance in brain aging can be predicted 
by a more risky lifestyle, and therefore, whether it may be 
a potential soil for neurocognitive alterations (McDonough 
and Allen 2019).

First, we examined the relation between our newly devel-
oped combined lifestyle risk score (Bittner et al. 2019) and 
BrainAGE. We hypothesized that higher combined life-
style risk would generally predict accelerated brain aging, 
i.e., higher BrainAGE scores. Second, we investigated the 
association between each individual lifestyle variable and 
BrainAGE to further elucidate contributions of single life-
style variables to this age acceleration prediction. We ran all 
analyses for the whole sample and subsequently for males 
and females separately (based on separate BrainAGE estima-
tions) to account for sex-specific differences.

Materials and methods

Participants

One thousand, three hundred and sixteen participants with 
an age range from 18.5 to 87.0 years were available from 
the 1000BRAINS study (Caspers et  al. 2014) of Euro-
pean ancestry. Due to the population-based nature of the 
1000BRAINS study, the only exclusion criteria were con-
traindications for the MR session (Caspers et al. 2014). From 
the overall cohort sample, 87 participants were exluded due 
to missing MR scans, methodological failure during data 
processing (see MRI preprocessing) or missing BrainAGE 
estimation. Hence, 1229 MR datasets were available as train-
ing sample for brain age estimation (see “Age Estimation 
Framework”).

For the lifestyle analyses, we used data of those partic-
ipants aged older than 55 years recruited from the Heinz 
Nixdorf Recall study (Schmermund et al. 2002). From those 

1229 participants with available MR data, n = 666 were 
within the selected age range. Two participants had to be 
excluded from the lifestyle analyses due to incidental find-
ings, and 42 participants due to missing values in behavioral 
data. Finally, the older subsample for the lifestyle analyses 
consisted of 622 participants (272 females, 350 males) with 
an age range of 56–85 years (mean = 67.5 years, SD = 6.7). 
The study protocol of 1000BRAINS was approved by the 
Ethics Committee of the University of Essen (Germany). 
All participants gave written informed consent in agreement 
with the declaration of Helsinki.

Lifestyle measures

Lifestyle data were retrieved from the database of the third 
examination (10-year follow-up) of the Heinz Nixdorf Recall 
study that commenced in June 2011 (Caspers et al. 2014; 
Schmermund et al. 2002).

Alcohol consumption

Average consumption of different alcoholic beverages (beer 
as 0.2 l, red and white wine as one glass of 0.2 l, and spir-
its as 0.02 l) within the last 4 weeks was assessed via a 
self-report questionnaire (Schmermund et al. 2002). The 
proportion of pure alcohol within the specific beverage was 
then multiplied with the frequency of drinking. Next, all 
beverages per person were summed up, resulting in the total 
amount of pure alcohol consumption in grams per month 
(g/month). Alcohol consumption as assessed via self-report 
questionnaires has been shown to highly correlate with 
blood indices of alcohol consumption (Glovannucci et al. 
1991), multiple weekly self-report diet records (Glovannucci 
et al. 1991) and transdermal alcohol-use assessment (Simons 
et al. 2015), thus providing adequate reliability and validity 
for most research purposes (Del Boca and Darkes 2003).

Smoking

The degree of lifetime exposure to tobacco smoking was 
assessed as pack-years (Duriez et al. 2014; Franklin et al. 
2014; Karama et al. 2015), calculated by multiplying the 
years of smoking with the self-reported number of smoked 
cigarettes per day.

Social integration

Social integration was assessed using an adapted ver-
sion of the social integration index (Berkman 2004). The 
present social integration index comprised the domains 
“Marital status” (married or cohabitating participants were 
scored a 2; single, never married, widowed, or divorced 
participants were scored a 0), “close ties” (sum score 
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derived from the number of children, close relatives, and 
friends) and “membership in organizations” (sum score of 
the number of organizations participants were members in 
and participated in at least once a month). Organizations 
included were: sport clubs, regional clubs, hunting clubs, 
choirs, theater clubs, music clubs, occupational or labor 
unions, political clubs or parties, congregations, and self-
help groups. The scores of all three domains were summed 
up into the social integration score.

Physical activity

To measure physical activity, we used the metabolic equiv-
alent of task (MET; Ainsworth et al. (2000) measuring the 
energy expenditure of a given activity compared to rest. 
The compendium of physical activities (Ainsworth et al. 
2000) provides a mean energy expenditure value per hour 
of each activity. Participants were asked to report up to 
four different sportive activities, carried out within the last 
month. Based on the MET values assigned to the activi-
ties listed in the compendium, MET values were assigned 
to each of the activities reported by the participants and 
multiplied by the duration in hours (per month). Finally, 
a sum score of all activities was calculated. In addition, 
body mass index (BMI) was measured, since it has been 
shown to affect the association between physical activity 
and brain volume (Ho et al. 2011).

Construction of the combined lifestyle risk score

The combined lifestyle risk score was constructed as used 
in a previous study (Bittner et al. 2019). That is, to stand-
ardize the measurements of the four lifestyle variables, 
we first transformed the raw score on each individual life-
style variable into a z-score. Next, to obtain a risk score 
that indicated higher risk with higher values, we reversed 
signs of the protective behaviors (social integration and 
physical activity). To obtain a risk score where a value of 
zero would indicate a mathematical balance of negative 
and protective behaviors, an additional linear transforma-
tion of the z-transformed lifestyle behaviors was applied: 
The protective variables were linearly transformed into 
negative scores by subtracting the maximum value from 
each individual measurement, whereas risk behaviors were 
analogously transformed into positive scores by adding the 
minimum value to each individual measurement. Hence, 
all values for risk behaviors were positive. Finally, the 
linearly transformed values of all individual lifestyle vari-
ables were summed up into one combined lifestyle risk 
score.

Covariates

Since we aimed at investigating the residual variability in 
brain aging, we considered chronological age to be a covari-
ate as it was associated to the BrainAGE score (Fig. 2b). 
However, it is not conclusive, whether chronological age 
should be included within statistical analyses on BrainAGE, 
since BrainAGE is based on chronological age (Smith et al. 
2019). We, therefore, conducted three different approaches 
to address this issue: approach 1 included chronological 
age as a predictor in the regression models of lifestyle on 
BrainAGE, approach 2 did not include chronological age 
within the models and  for approach 3, chronological age 
was regressed out of BrainAGE, before using BrainAGE as 
a dependent variable.

The brains of women and men show differences with 
respect to their structural architecture, e.g., in the propor-
tion of gray matter and the thickness of the cortex (Ritchie 
et al. 2018), as well as aging trajectories (Cosgrove et al. 
2007; Franke et al. 2014; Gur and Gur 2017; Ruigrok et al. 
2014; Wierenga et al. 2018), functional network organiza-
tion sub-serving cognitive abilities (Jiang et al. 2020), as 
well as the morphology of the so-called social brain (Kiesow 
et al. 2020). Hence, we considered sex as a covariate in the 
statistical models, and separately examined sex differences 
in performance measures and lifestyle analyses.

In addition, higher education is associated with higher 
cognitive performance (Elias et al. 1997) and is generally 
considered a proxy for brain reserve, the ability to better 
tolerate age-related neuronal loss (Bartrés-Faz and Arenaza-
Urquijo 2011; Christensen et al. 2008; Stern 2012). Further-
more, there may be associations between education, intel-
ligence, and lifestyle behavior (Cullen et al. 2012; Fratiglioni 
et al. 2004), where less smoking has been found in more 
educated individuals (McKenna et al. 2003). Hence, we 
hypothesized general educational level as a possible con-
founding factor and added education as a covariate into the 
statistical model. General education was measured using the 
international standard classification of education (UNESCO 
1997), a standard classification system with 10 levels, where 
higher levels indicate higher education. Further, cognitive, 
physical and mental health of our older participants was esti-
mated. Physical and mental well-being was estimated using 
the SF36 self-report questionnaire (SF-36 Fragebogen zum 
Gesundheitszustand (Franke et al. 1998) assessing quality of 
life in relation to health. As body mass index (BMI) has been 
shown to influence the association between physical activity 
and brain structure (Ho et al. 2011) and memory perfor-
mance (Floel et al. 2008), it was considered as a covariate 
in the analyses of the combined lifestyle risk score, as well 
as of physical activity. Cognitive performance was exam-
ined using the DemTect test (Kalbe et al. 2004), a screening 
tool for dementia symptoms including verbal and working 
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memory, word fluency and intellectual flexibility examina-
tions. The DemTect test was designed to provide information 
on the general cognitive status. The present study used these 
estimates, i.e., physical and mental well-being, as well as 
cognitive status, to provide more information on the general 
fitness of the here presented older adult sample.

MRI preprocessing

T1-weighted anatomical 3D images were collected with 
a 3 T Tim-TRIO MR scanner (Siemens Medical System, 
Erlangen, Germany). The following scan parameters were 
used: TR = 2.25 s, TE = 3.03 ms, TI = 900 ms, FoV = 256 
× 256 mm2, flip angle = 9°, voxel resolution = 1 × 1 × 1 
 mm3, and 176 axial slices. A detailed description of the 
1000BRAINS study protocol can be found in Caspers et al. 
(2014). MRI preprocessing was done using the SPM12 tool-
box (The Wellcome Dept. of Imaging Neuroscience, Lon-
don; www.fil.ion.ucl.ac.uk/spm) and the CAT12 package 
(http://dbm.neuo.uni-jena.de) running under Matlab (The 
MathWorks Inc., Natick, MA, USA). First, T1-weighted 
images were corrected for bias field inhomogenities and 
spatially normalized. Then, images were segmented (Ash-
burner and Friston 2005) into gray matter (GM), white mat-
ter (WM) and cerebro-spinal fluid (CSF) using an approach 
additionally accounting for partial volume effects (Tohka 
et al. 2004) by applying adaptive maximum a posteriori 
estimations (Rajapakse et al. 1997) and a hidden Markov 
Random Field Model (Cuadra et al. 2005), as described in 
Franke et al. (2010). From these segmentation maps, only 
GM maps were used for the BrainAGE estimation frame-
work. GM maps were registered using an affine registra-
tion and further smoothed with an 8-mm full-width-at-half-
maximum (FWHM) kernel, while resampling the volumes at 
8-mm spatial resolution. Next, since neighboring voxels are 

spatially correlated and therefore contain redundant infor-
mation, principal component analysis (PCA) was conducted 
to reduce data dimensions using the “Matlab toolbox for 
Dimensionality Reduction” (version 0.7b; Van der Maaten 
(2007).

Age estimation framework

Training data

The BrainAGE framework is based on a relevance vector 
machine (RVM) (Tipping 2001) that transforms training 
data into a high-dimensional space (Bennett and Camp-
bell 2000) and translates features learned from a training 
sample for a specific outcome variable (i.e., age) onto an 
unkown test sample (Fig. 1). To train and test the Brain-
AGE framework with respect to prediction accuracy and 
reliability, we used a ‘leave 10 out’-procedure within the 
full cohort of 1000BRAINS, which spans 1,229 MR datasets 
with an age range from 18.5 to 87.0 years (M = 60.7 years, 
SD = 13.4 years; Mmale = 60.7 years,  SDmale = 14.0 years; 
Mfemale = 60.9 years,  SDfemale = 12.5 years). Even though our 
study focuses on the association between lifestyle behavior 
and brain aging in older adults, we chose to train the RVM 
on the full cohort of 1000BRAINS for two reasons: (i) from 
a neuropsychological perspective, brain aging is a highly 
complex phenomenon, which can - as a pattern - better be 
learned by the algorithm when having access to a larger age 
range, which in the full cohort spans the entire adult life 
span (18.5–87 years), i.e., the algorithm has access to phe-
notypically richer data. However, using the whole age range 
has methodological advantages as well (ii): having as many 
and as morphologically rich training data as possible within 
the learning phase results in higher (and therefore, more 
constant) degrees of freedom, higher predictive power, and 

Fig. 1  Representation of the BrainAGE concept. a The model of 
healthy brain aging is trained with the chronological age and preproc-
essed structural MRI data of a training sample (left, with an exem-
plary illustration of the most important voxel locations that were used 
by the age regression model). Subsequently, the individual brain ages 
of previously unseen test subjects are estimated, based on their MRI 

data (blue, picture modified from Schölkopf et al. 2002). b The dif-
ference between the estimated and chronological age results in the 
BrainAGE score. Consequently, positive BrainAGE scores indicate 
accelerated brain aging (Franke et  al. 2010) [Figure modified from 
Franke et al. (2012)]

http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuo.uni-jena.de
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higher accuracy. This has been shown even though train-
ing and test samples differ demographically [(Cole et al. 
2015; Franke et al. 2010; Varikuti et al. 2018); for a recent 
review see Cole et al. 2019]. In the training stage, the input 
data (i.e., n - 10 of the whole sex-split sample) were used 
to train the BrainAGE framework using chronological age 
and the GM tissue probability maps (Franke et al. 2010). 
The algorithm was trained seperately for female and male 
participants, considering that different features may be rel-
evant for age prediction in females and males, as has been 
shown for intelligence prediction (Jiang et al. 2020) and for 
social characteristics (Kiesow et al. 2020). Blind to their 
true chronological age, the patterns learned by the relevance 
vector regression were then transferred to the unknown 10 
test participants that were left out during the training stage, 
such that estimated age was based only on their anatomical 
patterns within the GM maps. This procedure was repeated 
until estimated age was provided for the full cohort of 
1000BRAINS. For each participant, true chronological age 
was then subtracted from estimated age:

Positive BrainAGE scores reflect accelerated aging, i.e., 
the estimated age is higher than the chronological age. In 
contrast, negative BrainAGE scores reflect decelerated 
aging, i.e., the estimated age is lower than the chronological 
age. Finally, a correction for a quadratic age trend, which is 
identifiable in Fig. 1a, was applied to the resulting Brain-
AGE values using spm_detrend (SPM12, The Wellcome 
Dept. of Imaging Neuroscience, London; www.fil.ion.ucl.
ac.uk/spm).

Statistical analysis

In the first step, we explored performance measures of the 
BrainAGE framework. In a second step, we investigated 
the influence of possible covariates (sex and education) on 
BrainAGE to examine whether we need to consider their 
influences in the lifestyle analyses. In the main analyses, we 
then examined the assocations between combined lifestyle 
risk, as well as the individual lifestyle behaviors and Brain-
AGE. All statistical analyses were carried out using IBM 
SPSS Statistics 26.0.

Performance measures for the BrainAGE estimation

Following recent recommendations on age estimation mod-
els (Cole and Franke 2017) and the machine-learning litera-
ture (Bzdok and Ioannidis 2019; Yarkoni and Westfall 2017), 
we provide study sample-specific performance measures for 
the age estimation framework applied within this study. To 

BrainAGE = estimated age − chronological age.

test the accuracy of our model, we took the mathematical 
absolute value of each BrainAGE value and calculated the 
sample mean, which should then reflect the mean absolute 
error (MAE) of the brain age estimation. The smaller the 
MAE is, the better the performance of the estimation (Cole 
and Franke 2017). The idea behind is that each individual 
BrainAGE value can also be interpreted as the error of the 
age estimation model (i.e., the extent to which the estima-
tion deviates from the true age). In addition, we examined 
Pearson correlations between estimated age, chronological 
age, and BrainAGE.

Relation between covariates and BrainAGE

We calculated a between-subjects multivariate analysis of 
co-variance (MANCOVA) with sex as independent factor 
(male vs female), educational level as covariate and chron-
ological age, estimated age, and BrainAGE as dependent 
variables. Sex differences in educational level were exam-
ined using a between-subject ANCOVA with independent 
factor sex (male vs female), covariate chronological age 
and education as dependent variable. In addition, we calcu-
lated Spearman correlations (method of choice for ordinally 
scaled variables, such as the ISCED) between education and 
BrainAGE. Further, we analyzed descriptive statistics of 
physical and mental well-being, as well as congitive status 
of the older subsample for sample description.

Lifestyle and BrainAGE

In our main analyses, we investigated the associations 
between lifestyle and BrainAGE using a twofold approach. 
First, we examined whether and how well BrainAGE would 
be predictable by our combined lifestyle risk score and sec-
ond, we examined the prediction of BrainAGE by each indi-
vidual lifestyle variable.

To investigate the linear effect of combining the four 
lifestyle variables into one score, we calculated multiple 
linear regressions (with IBM SPSS Statistics 26.0). The 
initial model (model 1) analyzing combined lifestyle risk 
used the combined lifestyle risk score and sex as explana-
tory variables. The second analysis introduced sex and 
the individual lifestyle behaviors (physical activity, social 
integration, alcohol consumption, and pack-years of 
cigarettes) as explanatory variables in model 1. In both 
analyses we used BrainAGE as dependent variable to be 
predicted. In a second model for each analysis, we applied 
a post hoc outlier exclusion (values > 3 SD) for each vari-
able that showed a significant effect on BrainAGE. As 
additional covariates education and cognitive status were 
added within a third and a forth model. Please note, that 
each analysis step, i.e., model, was carried out for each of 
the approaches 1, 2 and 3. To assess whether the combined 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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lifestyle risk score explaines more variance than the indi-
vidual lifestyle variables, we compared the explained vari-
ance in  R2 of both approaches. Further we supplement 
our analyses with prediction metrics (mean absolute error, 
MAE) assessing how well the lifestyle models predict the 
individual expression of the BrainAGE score. MAE was 
calculated as the sum of the absolut value of the unstand-
ardized residuals of each regression.

Sex differences in  the  association between  lifestyle 
and  BrainAGE Subsequently, we wanted to know whether 
sex changes the association between lifestyle and Brain-
AGE. We calculated a between-subjects ANCOVA using sex 
as independent between-subjects factor, chronological age, 
education and the combined lifestyle risk score as covariates 
and BrainAGE as dependent variable, while introducing an 
interaction term between sex and the combined lifestyle risk 
score to test for a moderating effect of sex on the association 
between lifestyle risk and BrainAGE. To test for moderat-
ing effects of sex on the association between the individual 
lifestyle behaviors and BrainAGE, we calculated a between-
subjects MANCOVA using the same independent factor, 
but using chronological age, education and social integra-
tion, physical activity, alcohol consumption, and smoking as 
covariates, while introducing interaction terms between sex 
and each respective lifestyle variable.

Next, we performed separate multiple linear regression 
analyses for the two sexes first without introducing covari-
ates, then applying the oulier correction, then adding educa-
tion and cognitive status (and BMI where necessary).

In sum, these were 15 main tests (four lifestyle vari-
ables, the combined lifestyle risk score, i.e., 5 variables 
tested, the main analysis in the whole subsample and the 
subsequent sex-stratified analyses) such that we compared 
the final results against a Bonferroni-adjusted p value of 
padjusted = 0.05/15 ≈ 0.003.

Quadratic effects: To further test for quadratic effects 
of the combined lifestyle risk score, as well as individual 
lifestyle behaviors on BrainAGE, we used curve fitting to 
compare whether quadratic functions result in a better fit for 
any lifestyle variable and BrainAGE by first regressing the 
linear effect of the three covariates age, sex and education 
out and then using the residuals of the respective lifestyle 
variable as input. The linear function was defined as:

whereas the quadratic function was defined as

subscript “l” indicates that the regressor belongs to the lin-
ear model, whereas subscript “q” indicates that the regres-
sors belong to the quadratic function. In the final step, linear 

BrainAGE = intercept + b1lx lifestyle + �,

BrainAGE = intercept + b1qx lifestyle + b2qx
2
+ �,

and quadratic functions were compared with regard to the 
explained variance  R2.

Quantification of  lifestyle effects To quantify the effect of 
the combined lifestyle risk score and those individual life-
style variables that showed a significant effect on Brain-
AGE, we estimated the slopes of the linear regression line 
for each explanatory factor using the linear equation:

We used the intercept and unstandardized regression 
coefficients as calculated in the multiple linear regression as 
input for this equation, while the respective lifestyle variable 
(i.e., the combined lifestyle risk score or one individual life-
style variable) was set to 1. We then multiplied the parameter 
b3 with 12 months. These “additional months of age” reflect 
the increase in months of BrainAGE with one increase in the 
explanatory variable, while the effect of the lifestyle variable 
was already adjusted for the covariates of age and gender.

We defined groups to further analyze the association 
between smoking and BrainAGE and matched never (pack-
years = 0, 82 male, 82 female) to moderate (pack-years < 20, 
96 males, 68 female) to severe smokers (pack-years ≥ 20, 
55 females, 109 males) for age. We then calculated an 
ANCOVA using the factors group (never vs. moderate vs. 
severe) and sex, and the covariates age and education on the 
dependent variable BrainAGE.

Power analysis As the effects of lifestyle on the brain as well 
as effects in large population-based samples are generally 
rather small, e.g., Miller et  al. (2016); Yarkoni and West-
fall (2017), power analyses using GPower (Faul et al. 2009; 
http://www.gpowe r.hhu.de/) were calculated for the applied 
linear regression models as recommended for studies with a 
given sample size (Faul et al. 2009). Power reflects the prob-
ability of rejecting false null hypotheses, in our case reject-
ing an association between lifestyle and BrainAGE which 
is truly not there. Here, type-I error level α, the sample size 
of the lifestyle analyses (n = 622 for the whole subsample) 
and the fully adjusted model number of predictors (age, 
sex, education, cognitive status and the respective lifestyle 
variable of interest) were used. Effect sizes were taken from 
previous studies on the association between lifestyle and the 
brain in older adults of comparable age (Bugg and Head 
2011; Karama et al. 2015).

Data availability

The datasets generated and/or analyzed during the current 
study will be made available from the corresponding author 
to other scientists on request in anonymized format and 
according to data protection policy in the ethics agreement.

BrainAGE = intercept + b1x sex + b2x age + b3x lifestyle + �.

http://www.gpower.hhu.de/
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Results

Performance of the BrainAGE estimation framework

Descriptive statistics of the training dataset, comprising the 
whole available sample of 1000BRAINS (n = 1229), are 
shown in Table 1. Mean BrainAGE was 0.00 (SD = 5.04). 
The mean absolute error (MAE) between chronological and 
estimated age was low with 4.62 years (SD = 3.67), respec-
tively was the correlation very high (r = 0.90, p < 0.001, 
Table 2, Fig. 2a). The regression of estimated age on chrono-
logical age explained up to 83% of the variance (Table 1).

Within the older subsample (n = 622), which we used for 
our main analysis of the association between lifestyle and 
BrainAGE, mean BrainAGE was 0.23 years (SD = 4.96) 
with a maximum positive deviation between chronologi-
cal and estimated age of  + 15.92 years (brains appearing 
older compared to their chronological age) and a maxi-
mum negative deviation of – 15.67 years (brains appear-
ing younger compared to their chronological age). MAE 
was 3.97 (SD = 2.99) years, and did not differ between the 
two sexes [T(2, 620) = 0.20, p = 0.839]. The regression of 
estimated age on chronological age explained up to 52% 
of the variance (Table 1). The correlation between chrono-
logical and estimated age was r = 0.714 (p = 0.0001, Table 2, 
Fig. 3a), whereas the correlation between chronological age 
and BrainAGE was r =− 0.10 (p = 0.025, Fig. 3b). Hence, 
the older the participants are, the lower were the BrainAGE 
scores.

Relation between covariates and BrainAGE 
in the older adult sample

In the between-subject MANCOVA, there was no sig-
nificant difference between female and male participants 

in chronological age, F(1,621) = 1.55, p = 0.213, 
η2 = 0.002, nor in BrainAGE, F(1, 621) = 1.35, p = 0.246, 
η2 = 0.002. Mean estimated age was 1.28 years lower for 
females than for males with F(1,621) = 3.98, p = 0.046, 
η2 = 0.005 (Table 1). In the between-subjects ANCOVA, 
males showed a higher educational level than females 
[F(1,621) = 39.50, p < 0.0001, η2 = 0.06]. No correlation 
between BrainAGE and education was found (p = 0.937), 
even when stratifying the analyses for the two sexes 
(Table  3). Physical and mental well-being was high 
(mean = 78.66, max possible: 100, Suppl. Table 1a). On 
average participants completed the DemTect test with an 
overall score of 14.8 points (out of 18). Only eight par-
ticipants met the criteria for being at risk for dementia 
(Suppl. Table 1b). We excluded these participants, as well 
as participants, who did not complete the DemTect test in 
the models where cognitive status was introduced to see 
if results stayed stable.

Table 1  Performance of 
the BrainAGE estimation 
framework

Descriptive statistics and performance measures for the whole training sample, as well as the older subsam-
ple for lifestyle analyses. Age is given in years. Standard deviation is given in parentheses
MAE mean absolute error between estimated and chronological age, R2 explained variance drawn from lin-
ear regressions of estimated age on chronological age

Mean chrono-
logical age

Mean estimated age Mean BrainAGE MAE R2

Whole sample of 1000BRAINS, n = 1229, age range 18.5–85.4
Whole group 60.8 (13.4) 60.7 (11.6) 0.0 (5.0) 4.6 (3.7) 0.81
Male (n = 680) 60.7 (14.0) 60.8 (10.5) 0.0 (5.1) 4.6 (3.6) 0.78
Female (n = 549) 60.9 (12.5) 60.6 (12.4) − 0.1 (4.9) 4.6 (3.7) 0.83
Older subsample used in analyses of lifestyle, n = 622, age range 56.2–85.4
Whole group 67.5 (6.7) 66.8 (7.5) − 0.2 (5.0) 4.0 (3.0) 0.51
Male (n = 350) 67.8 (6.7) 66.5 (7.2) − 0.4 (5.1) 4.1 (3.1) 0.51
Female (n = 272) 67.1 (6.7) 65.7 (6.9) 0.1 (4.8) 3.8 (2.9) 0.52

Table 2  Correlations between chronological age, estimated age and 
BrainAGE

Pearson correlations between chronological age, estimated age, and 
BrainAGE for the whole sample and the subsample used in the life-
style analyses

Estimated age BrainAGE

Whole sample of 1000BRAINS, n = 1229
 Chronological age
  Whole group r = − 0.90, p < 0.001 r = 0.00, p = 0.999
  Male (n = 650) r = 0.92, p < 0.001 r = − 0.07, p = 0.083
  Female (n = 549) r = 0.88, p < 0.001 r = 0.10, p = 0.024

Older subsample used in analyses of lifestyle, n = 622
 Chronological age
  Whole group r = 0.71, p < 0.001 r = − 0.10, p = 0.025
  Male (n = 350) r = 0.71, p < 0.001 r = 0.07, p = 0.209
  Female (n = 272) r = 0.72, p < 0.001 r =− 0.12, p = 0.047
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Main analyses of lifestyle and BrainAGE

Combined lifestyle risk

In our first analysis of lifestyle, we investigated the asso-
ciation between combined lifestyle risk and BrainAGE. 
Table 4 shows descriptive statistics for all individual life-
style variables as well as for the combined lifestyle risk 
score. Mean combined lifestyle risk was − 1.02 (SD = 2.1), 
reflecting a rather protective behavior within the selected 
older subsample of 1000BRAINS.

We now investigated how well combined lifestyle risk 
predicted BrainAGE in the multiple linear regressions 
implementing all three approaches to deal with chrono-
logical age [approach 1 including chronological age as 

predictor, 2 ignoring age and 3 examining the age-cor-
rected residuals]. Please also see Table 5 for all regression 
statistics.

Combined lifestyle risk significantly predicted Brain-
AGE in all three age approaches using sex as covariate: 
Higher combined lifestyle risk was predictive of higher 
BrainAGE, with a regression coefficient of β = 0.182 to 
β = 0.183, all p < 0.001. These results remained stable, 
even after outlier exclusion (all p < 0.001, Fig. 4; outlier 
marked with diamond shapes, Table 5), introducing educa-
tion (all p < 0.001), as well as cognitive status (DemTect) 
and BMI (all p < 0.001) as covariates. All of these associa-
tions were significant at padjusted ≈ 0.003. Within the fully 
adjusted model, the combined lifestyle risk score predicted 
2.3–2.5% of the variance in BrainAGE, with a MAE of 
about 3.93 years in all approaches.

Fig. 2  Scatter plots for the whole sample of 1000BRAINS, n = 1229. 
a Correlation between estimated and chronological age. Light-grey 
dots represent a regression line fitted to a simulated perfect correla-
tion between estimated and chronological age of r = 1.0. b Correla-

tion between chronological age and BrainAGE. The correlation was 
significant for female, but not for male participants. Black dots repre-
sent men, dark-grey dots represent women

Table 3  Correlations between 
ISCED and chronological age, 
estimated age and BrainAGE

Spearman correlations between general level of education as measured by ISCED with chronological age, 
estimated age, and BrainAGE for the older subsample of lifestyle analyses
ρ Spearman correlation coefficient

Spearman correlations Chronological age Estimated age BrainAGE

ISCED
 Whole subsample (n = 622) ρ = − 0.14, p < 0.001 ρ = 0.13, p = 0.001 ρ = − 0.03, p = 0.937
 Male (n = 350) ρ = − 0.11, p = 0.040 ρ = 0.12, p = 0.028 ρ = − 0.06, p = 0.251
 Female (n = 272) ρ = − 0.16, p = 0.008 ρ = − 0.13, p = 0.029 ρ = 0.02, p = 0.705
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Individual lifestyle variables

In the next step, we examined which individual lifestyle 
variables were predictive of BrainAGE by including all four 
individual lifestyle variables into a multiple linear regres-
sion as explanatory variables, while correcting for sex. 
This was done for all three approaches. Overall, the model 
significantly predicted BrainAGE, F(6,615) = 5.14–5.17, 
all p =  < 0.001, R2 = 0.040–0.048. Neither alcohol con-
sumption (β = 0.049–0.053, all p > 0.197, R2 = 0.002), 
nor social integration (β = − 0.054–0.055, all p > 0.169, 

R2 = 0.002) significantly predicted BrainAGE (Suppl. 
Table 3). But a higher amount of smoking predicted higher 
BrainAGE, with β = 0.136–0.140, all p =  < 0.001. Smok-
ing was still predictive of BrainAGE after outlier correc-
tion (β = 0.170–0.175, all p < 0.0001; Fig.  4; 10 outlier 
marked with diamond shapes), as well as adding educa-
tional level (β = 0.169–0.175, all p < 0.0001), and cogni-
tive status (β = 0.173–0.181, all p < 0.0001) as covariates. 
In this fully adjusted model, pack-years of smoking pre-
dicted 2.9–3.2% of the variance in BrainAGE with a MAE 
of 3.88–3.90 years (Table 6) and remained significant as 

Table 4  Descriptive statistics of lifestyle variables

Descriptive statistics for all four individual lifestlye variables, as well as the combined lifestlye risk score for the total older subsample (n = 622), 
as well as for older males (n = 350) and older females (n = 272)

Min Max Mean SD

Pack-years Total sample (male, female) 0.00 (0.00, 0.00) 204.00 (204.00, 123.00) 13.61 (16.27, 1.19) 21.73 (24.37, 17.21)
Alcohol consumption Total subsample 0.00 198.50 11.25 19.87

(male, female) (0.00, 0.00) (198.50, 79.40) (15.85, 5.33) (23.86, 10.46)
Physical activity Total subsample 0.00 196.00 14.32 20.94

(male, female) (0.00, 0.00) (196.00, 189.00) (14.69, 13.86) (21.07, 20.81)
Social integration Total subsample 3.00 53.00 12.99 6.40

(male, female) (3.00, 4.00) (53.00, 44.00) (13.19, 12.72) (6.53, 6.24)
Combined lifestyle risk Total subsample − 9.60 10.36 − 1.02 2.06

(male, female) (− 9.60, − 9.08) (10.36, 4.96) (0.72, 1.40) (2.19, 1.81)

Table 5  Linear regression statistics examining combined lifestyle risk for all three approaches

****p < 0.0001, ***p <  = 0.001, **p < 0.01, *p < 0.05; approach 1 included chronological age as a predictor in the regression models of lifestyle 
on BrainAGE, 2 did not include chronological age within the model and 3 used the residuals of BrainAGE after chronological age was regressed 
out of BrainAGE. If the DemTect test  was added as covariate, only participants, who completed the DemTect and reached a score > 8 were 
included in that specific analysis. R2 in brackets is the amount of R2 only explained by the combined lifestyle risk score, when already adjusted 
for all covariates, if present. p values of the β-coefficients are rounded to three decimals

Whole subsample (n = 622) Male (n = 349) Female (n = 272)

Includes “sex” as a covariate No covariate No covariate

1 2 3 1 2 3 1 2 3

Risk score β = 0.182
T = 4.543
p < 0.0001

β = 0.183
T = 4.566
p < 0.0001

β = 0.182
T = 4.546
p < 0.0001

β = 0.193
T = 3.658
p < 0.0003

β = 0.193
T = 3.656
p < 0.0003

β = 0.193
T = 3.664
p < 0.0003

β = 0.157
T = 2.630
p < 0.009

β = 0.162
T = 2.700
p = 0.007

β = 0.158
T = 2.633
p = 0.009

F 8.77**** 10.72**** 10.73**** 7.46**** 13.36**** 13.42**** 5.50** 7.29** 6.93**
R2 0.041 

(0.032)
0.034 
(0.033)

0.034 
(0.032)

0.041 
(0.037)

0.037 
(0.037)

0.037 
(0.037)

0.039 
(0.025)

0.026 
(0.026)

0.025 
(0.025)

MAE (SD) 3.93 (2.85) 3.93 (2.85) 3.93 (2.85) 4.01 (2.93) 4.01 (2.95) 4.01 (2.93) 3.82 (2.76) 3.84 (2.78) 3.82 (2.76)

Sex, education, BMI, DemTect (n = 595) Education, BMI, DemTect (n = 334) Education, BMI, DemTect (n = 262)

Risk score β = 0.158
T = 3.733
p < 0.0002

β = 0.164
T = 3.925
p < 0.0001

β = 0.159
T = 3.808
p < 0.0002

β = 0.162
T = 2.912
p = 0.004

β = 0.164
T = 2.944
p = 0.003

β = 0.162
T = 2.92
p = 0.004

β = 0.138
T = 2.246
p = 0.026

β = 0.146
T = 2.392
p = 0.017

β = 0.139
T = 2.266
p = 0.024

F 5.26*** 4.707**** 4.855*** 2.676* 2.822* 2.855* 4.074*** 2.967 3.4943**
R2 0.049

(0.023)
0.038
(0.025)

0.04
(0.024)

0.039
(0.025)

0.032
(0.026)

0.034
(0.025)

0.074
(0.019)

0.060
(0.023)

0.058
(0.020)

MAE (SD) 3.90 (2.90) 3.92 (2.92) 3.90 (2.99) 3.90 (2.95) 4.00 (2.96) 3.99 (2.95) 3.73 (2.84) 3.75 (2.88) 3.73 (2.84)
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well after outlier exclusion (Fig. 5, marked with diamond 
shapes, β = − 0.147–0.149, all p < 0.001). Higher physical 
activity remained significantly associated with lower Brain-
AGE after correction for all three additional variables, i.e., 
BMI, education and cognitive status in all three approaches 
(β = − 0.144–0.146, all p < 0.001) above padjusted ≈ 0.003. It 
was predictive of 2.0–2.1% of variance in BrainAGE with a 
MAE of 3.90–3.93.

Sex differences in the association between lifestyle 
and BrainAGE

Combined lifestyle risk The between-subjects ANCOVA 
did not show a significant interaction between sex and 
the combined lifestyle risk score on BrainAGE [F(4, 
617) = 0.18, p = 0.672], even after outlier correction [F(4, 
617) = 0.37, p = 0.545]. Nonetheless, we were interested in 
investigating sex differences further in exploratory analyses. 
After stratifying the group by the two sexes to account for 
overall sex differences in BrainAGE, higher combined life-
style risk was still associated with higher BrainAGE in all 
age approaches in both males (all β = 0.193, all p < 0.001, 
R2 = 0.037) and females (β = 0.158–0.162, p = 0.007–0.009, 
R2 = 0.025–0.026). Neither introducing education, nor BMI 
and cognitive status as additional covariates changed these 
associations (Table 5), nor outlier exclusion (Fig. 4, outliers 
marked with diamond shapes). In the fully adjusted model 
the combined lifestyle risk score predicted 2.5–2.6% of var-

iance (MAE = 3.99–4.00  years) in males and 1.9–2.3% of 
variance in BrainAGE (MAE = 3.73–3.75) in females. The 
associations in females were not significant after multiple 
comparison correction (padjusted ≈ 0.003), though.

Individual lifestyle variables We did not find any significant 
interaction effects of sex and the individual lifestyle vari-
ables on BrainAGE in the between-subject MANCOVA. 
After stratifying for the two sexes, smoking and physical 
activity showed significant effects (Tables 6, 7). A higher 
amount of smoking still significantly predicted higher Brain-
AGE for male [β = 0.164–0.166, all p = 0.002, R2 = 0.027–
0.033 for the whole model], as well as for female partici-
pants [β = 0.140–0.160, p = 0.008–0.022, R2 = 0.035 for 
the whole model]. After outlier correction (Table 6, Fig. 5, 
outliers marked with diamond shapes) and adding educa-
tion and cognitive status as covariates (model 3) higher 
pack-years predicted 2.7–2.8% of variance in BrainAGE 
(MAE = 4.01 years) in males and 2.2–2.8% (MAE = 3.85–
3.89 years) in females. However, the associations in females 
did not survive multiple comparison correction. The asso-
ciation between higher physical activity and lower Brain-
AGE, though, remained significant for male participants 
[β = − 0.186 to − 0.188, all p =  < 0.001, R2 = 0.035–0.040 
for the whole model], but not for female participants 
[β = − 0.089 to − 0.097, all p > 0.11, R2 = 0.008–0.026 for 
the whole model]. In males, this association was significant 
despite outlier correction, adding education, BMI and cog-

Fig. 3  Scatter plots for the older subsample of n = 622 used in the 
lifestyle analyses. a Correlation between estimated and chronological 
age was significant with r = 0.71 (p < 0.0001). b Correlation between 

chronological age and BrainAGE was r = − 0.09 (p = 0.025). Black 
dots represent men, dark-grey dots represent women. Sex-specific 
correlation values can be found in Table 2
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nitive status as covariates and multiple comparison correc-
tion (Table 7) with physical activity predicting 3.4–3.6% of 
the variance in BrainAGE (MAE = 4.01–4.03). In females, 
physical activity predicted only up to 0.8% of the variance in 
BrainAGE (MAE = 3.70–3.75) in the fully adjusted model, 
which was not significant.

Exploration of non‑linear lifestyle effects

Finally, we tested for quadratic effects of the combined life-
style risk score and individual lifestyle variables on Brain-
AGE. Lifestyle variables that were used as regressors in the 
curve fitting process were already corrected for sex, educa-
tion, and, in case of the combined lifestyle risk score and 
physical activity, BMI. Therefore, the R2 values within this 
estimation differ from those in the purely linear regressions. 
In the following section, the subscript “q” indicates that the 
regressors belong to the quadratic function (Fig. 6).

Combined lifestyle risk Adding a quadratic term to the linear 
regression of BrainAGE on combined lifestyle risk did not 

result in a significantly better fit than the linear regressions, 
with both functions explaining 2.4–3.0% of the variance and 
the quadratic term itself not being significant, which was 
also true after outlier correction and for each approach. After 
splitting the sample by sex, there was no difference between 
the linear and quadratic fit for male (R2

linear = 0.026–0.030, 
R2

quadratic = 0.030–0.035; all p > 0.225), and for female par-
ticipants (R2

linear = 0.020–0.022, R2
quadratic = 0.020–0.022; 

p > 0.882), which was also true after outlier correction. All 
regression statistics can be found in Suppl. Table 6.

Individual lifestyle variables Adding the quadratic term to 
the linear model describing the association between smok-
ing and BrainAGE resulted in marginally higher explained 
variance (R2

linear = 0.022–0.023, R2
quadratic = 0.023–0.025), 

while the quadratic term itself was not significant (all 
p > 0.269). This was also true in male participants only 
(R2

linear = 0.021–0.022, R2
quadratic = 0.24–0.026; all p > 0.273, 

Suppl. Table 7). After adding the quadratic term to the lin-
ear model for female participants, the model was no longer 
predictive of BrainAGE (Suppl. Table 7).

Fig. 4  Correlation between 
combined lifestyle risk and 
BrainAGE. Higher combined 
lifestyle risk was associated 
with higher BrainAGE. The 
color spectrum depicts the 
increase in lifestyle risk from 
protective (light grey) to bal-
anced (dark grey) to more risky 
(black) behaviour. Values are 
raw values to represent the 
general association, which was 
more specifically examined 
using different adjustements for 
chronological age in the three 
different approaches 1, 2 and 3
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Regarding the association between physical activity and 
BrainAGE, the quadratic term showed an additional effect on 
BrainAGE (R2

linear = 0.011–0.012; R2
quadratic = 0.019–0.020; 

β2q = 0.126–0.135, p < 0.034), which was no longer signifi-
cant after outlier correction (all p > 0.765, Suppl. Table 8). 
In male participants, including the quadratic term did also 
result in a slightly better model fit (all R2

linear = 0.018; 
R2

quadratic = 0.035–0.036, all p < 0.017), but this effect as 
well as the better model fit disappeared after outlier cor-
rection (all p > 0.0552, Suppl. Table 8). In female partici-
pants, neither the quadratic nor the linear model showed 
a significant association between physical activity and 
BrainAGE with even lower estimates of explained variance 
(R2 = 0.004–0.005) than in the linear regressions only.

Quantification of  lifestyle effects For one increase in the 
combined risk score (risk score = 1), BrainAGE was esti-
mated at 4.92  months older in addition to the effect of 
sex, chronological age, education and cognitive status 
(approach 1), which the beta values had already been cor-
rected for (BrainAGE = 1.747 + (− 0.90) × sex + (− 0.76) 
× age + (− 0.029) × education + 0.077 × BMI + 0.146 × 
DemTect + 0.412 × riskscore). Without chronological age 
(approach 2), BrainAGE was estimated at 5.16  months 
older and using the age-corrected residuals BrainAGE 
was estimated 5.04  months older. For each pack-year of 
cigarettes, BrainAGE was estimated at 0.6 months older in 

Table 6  Prediction statistics from linear regressions examining pack-years for all three approaches

****p < 0.0001, ***p <  = 0.001, **p < 0.01, *p < 0.05; approach 1 included chronological age as a predictor in the regression models of life-
style on BrainAGE, 2 did not include chronological age within the model and 3 used the residuals of BrainAGE after chronological age was 
regressed out of BrainAGE. If the DemTect test was added as covariate, only participants, who completed the DemTect and reached a score > 8 
were included in that specific analysis. R2 in brackets is the amount of R2 only explained by pack-years of smoking, when already adjusted for all 
covariates, if present. p values of the β-coefficients are rounded to four decimals

Whole subsample, outlier corrected 
n = 622

Male, outlier corrected n = 342 Female, outlier corrected n = 270

Includes sex as a covariate No covariate No covariate

1 2 3 1 2 3 1 2 3

Pack-years β = 0.170
T = 4.235
p < 0.0001

β = 0.175
T = 4.355
p < 0.0001

β = 0.171
T = 4.241
p < 0.0001

β = 0.166
T = 3.103
p = 0.002

β = 0.164
T = 3.065
p = 0.002

β = 0.166
T = 3.104
p = 0.002

β = 0.142
T = 2.330
p = 0.021

β = 0.160
T = 2.659
p = 0.008

β = 0.140
T = 2.312
p = 0.022

F 8.150*** 9.872**** 9.487**** 5.766** 9.395** 9.636** 4.903** 7.070** 5.346**
R2 0.039 0.031 0.03 0.033 0.027 0.027 0.035 0.026 0.02
MAE (SD) 3.90 (2.91) 3.91 (2.93) 3.90 (2.91) 4.02 (2.98) 4.02 (3.01) 4.02 (2.98) 3.78 (2.84) 3.79 (2.86) 3.79 (2.83)

Sex, education, DemTect (n = 593) Education, DemTect (n = 331) Education, DemTect (n = 263)

Pack-years β = 0.173
T = 4.211
p < 0.0001

β = 0.181
T = 4.397
p < 0.0001

β = 0.175
T = 4.265
p < 0.0001

β = 0.168 
T = 3.044
p = 0.003

β = 0.168
T = 3.040
p = 0.003

β = 0.168
T = 3.049
p = 0.002

β = 0.148
T = 2.418
p = 0.016

β = 0.166
T = 2.747
p = 0.006

β = 0.147
T = 2.424
p = 0.016

F 5.899**** 5.742*** 5.764*** 3.052* 3.133* 3.195* 4.754** 5.330*** 4.805**
R2 0.048 

(0.029)
0.038 
(0.032)

0.038 
(0.029)

0.036 
(0.027)

0.028 
(0.027)

0.028 
(0.028)

0.031 
(0.025)

0.058 
(0.028)

0.053 
(0.022)

MAE (SD) 3.88 (2.95) 3.90 (2.96) 3.88 (2.95) 4.01 (3.00) 4.02 (3.03) 4.01 (3.01) 3.73 (2.86) 3.73 (2.89) 3.73 (2.85)

Fig. 5  Association between smoking and BrainAGE. Higher Brain-
AGE was associated with higher amount of smoking. Black dots rep-
resent men, light-grey dots represent women. The interaction between 
sex and amount of smoking on BrainAGE was not significant. Dashed 
lines represent the fit of a quadratic function into the data. Values are 
raw values to represent the general association, which was more spe-
cifically examined using different adjustments for chronological age 
in the three different approaches 1, 2 and 3
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approach 1 (BrainAGE = 2.91 + (− 0.229) × sex + (− 0.07) 
× age + (− 0.032) × education + 0.164 × DemTect + 0.5 × 
pack-years), which was slightly higher with 0.62  months 
in approach 2 and and the same for approach 3. Finally, 
we calculated an increase in BrainAGE of 0.55  months 
per pack-year in males and 0.56  months per pack-year in 
females  (BrainAGEmale = 4.283 + (− 0.07) × age + (− 0.015) 
× education + 0.019 × DemTect + 0.46 × pack-years; 
 BrainAGEfemale = − 0.326 + (− 0.07) × age + (− 0.052) × 
education + 0.361 × DemTect + 0.47 × pack-years). For 
males this estimation was the same for all three approaches. 
For females the increase in BrainAGE was estimated higher 
in approach 2 with 0.63 month, but the same for approach 
3. Comparing never, moderate and severe smokers revealed, 
that the brains of severe smokers (BrainAGE = 1.61) 
appeared significantly older than those of never (Brain-
AGE = − 0.05) and moderate (BrainAGE = − 0.03) smokers, 
but that there was no significant difference between never-
smokers and moderate smokers in average BrainAGE.

For each metabolic equivalent that was expended 
per week, BrainAGE was estimated 0.55  month 
younger when including chronological age in approach 
1 (BrainAGE = 3.445 + (− 0.492 × sex + (− 0.088) × 
age + (− 0.056) × education + 0.056 × BMI + 0.176 × 
DemTect + (− 0.046) × physical activity). When not 
including chronological age (approach 2), the estima-
tion was slightly higher with 0.56 months of BrainAGE, 

but this vanished when chronological age was regressed 
out before estimation (approach 3). Finally, we calcu-
lated a decrease in BrainAGE of 0.70 months per meta-
bolic equivalent in males and 0.35 months per metabolic 
equivalent in females  (BrainAGEmale = 4.135 + (− 0.06) 
× age + (− 0.058) + (− 0.039) × education + 0.042 × 
BMI + 0.012 × DemTect + (− 0.058) × physical activity; 
 BrainAGEfemale = − 0.115 + (− 0.105) × age + (− 0.058) × 
education + 0.078 × BMI + 0.383 × DemTect + (− 0.029) 
× physical activity). This was the same, when regressing 
chronological age out of the BrainAGE score before esti-
mation (approach 3) in both sexes. When not including 
chronological age (approach 2), the estimation of BrainAGE 
increase was almost identical with 0.72 months in males, and 
0.34 months in females.

Power analysis

With n = 622 participants, an alpha level of 0.003 and num-
ber of predictors = 5 our power to detect an expected small 
(Cohen 2013) effect size of 0.05 (Karama, Bug and Head) 
was 0.99 for the regression of BrainAGE onto combined 
lifestyle risk within the whole subsample. With an expected 
effect size of 0.04 for pack-years of smoking our power was 
0.97. With an expected effect size of 0.07 for physical activ-
ity, our power was 0.99.

Table 7  Prediction statistics from linear regressions examining physical activity for all three approaches

****p < 0.0001, ***p <  = 0.001, **p < 0.01, *p < 0.05; approach 1 included chronological age as a predictor in the regression models of lifestyle 
on BrainAGE, 2 did not include chronological age within the model and 3 used the residuals of BrainAGE after chronological age was regressed 
out of BrainAGE. If the DemTect was added as covariate, only participants, who completed the DemTect and reached a score > 8 were included 
in that specific analysis. R2 in brackets is the amount of R2 only explained by physical activity, when already adjusted for all covariates, if pre-
sent. p values of the β-coefficients are rounded to three decimals

Whole subsample, outlier corrected 
n = 613

Male, outlier corrected n = 345 Female, outlier corrected n = 268

Includes sex as a covariate No covariate No covariate

1 2 3 1 2 3 1 2 3

Physical activity β = − 0.148
T = − 3.712
p < 0.0003

β = − 0.147
T = − 3.683
p < 0.0003

β = − 0.149
T = − 3.714
p < 0.0003

β = − 0.186
T = − 3.501
p = 0.001

β = − 0.188
T = − 3.541
p < 0.0005

β = − 0.186
T = − 3.506
p = 0.001

β = − 0.097
T = − 1.601
p = 0.111

β = − 0.089
T = − 1.457
p = 0.146

β = − 0.097
T = − 1.592
p = 0.113

F 6.72*** 7.068*** 7.276*** 7.047*** 12.541*** 12.291*** 3.53* 2.123 2.535
R2 0.03 0.023 0.023 0.04 0.035 0.035 0.026 0.008 0.009
MAE (SD) 3.93 (2.86) 3.95(2.88) 3.94 (2.86) 4.03 (2.84) 4.04 (2.85) 4.03 (2.84) 3.82 (2.86) 3.84 (2.90) 3.82 (2.85)

Sex, education, BMI, DemTect (n = 594) Education, BMI, DemTect (n = 333) Education, BMI, DemTect (n = 261)

Physical activity β = − 0.144
T = − 3.516
p < 0.0005

β = − 0.146
T = − 3.546
p = 0.0005

β = − 0.146
T = − 3.531
p = 0.0005

β = − 0.187
T = − 3.392
p = 0.009

β = − 0.192
T = − 3.475
p = 0.001

β = − 0.188
T = − 3.416
p = 0.001

β = − 0.088
T = − 1.433
p = 0.153

β = − 0.084
T = − 1.347
p = 0.179

β = − 0.080
T = − 1.422
p = 0.156

F 4.690*** 3.916** 4.237*** 3.139** 3.375** 3.318* 3.695** 3.20* 3.405**
R2 0.046 

(0.020)
0.032 
(0.021)

0.035
 (0.021)

0.046 
(0.034)

0.040 
(0.036)

0.039 
(0.034)

0.068
 (0.008)

0.048 
(0.007)

0.051 
(0.008)

MAE (SD) 3.90 (2.89) 3.93 (2.91) 3.90 (2.90) 4.01 (2.86) 4.03 (2.87) 4.01 (2.86) 3.70 (2.92) 3.75 (2.95) 3.70 (2.92)
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Discussion

The present study showed that lifestyle habits contribute to 
differences in brain aging in a cohort of “normal” aging 
older adults and gives promising insights into why people 
even without neurodegenerative diseases age so differently. 
We used two approaches: We used a novel lifestyle risk score 
(Bittner et al. 2019) combining different lifestyle variables 
into one value, while additionally investigating each life-
style habit alone. In addition, we examined differences in 
brain structure using BrainAGE as a meaningful imaging 
biomarker (Franke et al. 2012, 2014; Gaser et al. 2013; Lowe 
et al. 2016), which showed a very good performance in our 
sample (Cole and Franke 2017). Further, the results of our 
subsequent analyses may provide first hints at sex differ-
ences in the association between lifestyle and BrainAGE 
that are often not examined in studies on lifestyle-associated 
differences in the brain, e.g., in terms of smoking (Karama 
et al. 2015), alcohol consumption (Vergara et al. 2017) and 
physical activity (Kramer and Colcombe 2018).

Associations between combined lifestyle risk 
and BrainAGE

Prior studies focused mostly on the effect of single life-
style variables on the brain, considering co-occurrences of 
various lifestyle behaviors as nuisance factors rather than 
as effects of interest. In contrast, the current study consid-
ered four different lifestyle behaviors as a combined con-
cept (Bittner et al. 2019) to examine if lifestyle explains 
variability in BrainAGE and which lifestyle behaviors 
contribute the most to this association. Regarding a phe-
notype as complex and multidimensional as lifestyle, it is 
reasonable to assume that one specific behavior can only 
account for parts of the variance in brain aging, providing 
necessity for investigation of different variables together 
(Bittner et al. 2019; Floel et al. 2008; Vergara et al. 2017). 
Considering several behaviors as well as composite scores 
seem to provide a better prediction of differences between 
older adults, e.g., in verbal memory, than the individual 
measures alone (Floel et al. 2008). Comparable approaches 

Fig. 6  Association between 
physical activity and BrainAGE. 
Lower BrainAGE was associ-
ated with higher physical activ-
ity as measured with the meta-
bolic equivalent. Light-grey 
dots represent female, black 
dots represent male participants. 
The interaction effect between 
sex and physical activity on 
BrainAGE was not significant. 
The dashed lines represent 
quadratic trends. Regression 
lines were significant for males, 
whereas they were not signifi-
cant for females. Values are raw 
values to represent the general 
association, which was more 
specifically examined using dif-
ferent adjustments for chrono-
logical age in the three different 
approaches 1, 2 and 3
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have also been used in imaging genetics, where polygenic 
risk scores (several genetic markers aggregated into one 
score) can explain more variability in neurological dis-
eases and brain phenotypes than individual genetic mark-
ers alone (Dudbridge 2013; Harrison et al. 2016; Tork-
amani et al. 2018; Ursini et al. 2018). Considering the 
seed and soil model of neurocognitive disorders, it may 
be expected that a soil that promotes neuronal alterations 
gets even more toxic, the more risk factors come together 
(McDonough and Allen 2019). Therefore, we hypothe-
sized that our combined lifestyle risk score would predict 
more variance than each single behavior alone.

To test this hypothesis, we conducted three different 
approaches: approach 1 including chronological age as a pre-
dictor, approach 2 ignoring chronological age and approach 
3 regressing chronological age out of the BrainAGE score 
before the analyses. In general, the results of those three 
models were in agreement. Approach 1 was predictive of 
the highest amount of variance in BrainAGE, likely, since 
chronological age was still associated to this outcome, and 
therefore, contributed a small amount of prediction. The 
amount of variance in BrainAGE explained by the differ-
ent lifestyle variables, i.e., the combined lifestyle risk score, 
physical activity and pack-years of smoking was greatest in 
approach 2. Therefore, the quantification in months of Brain-
AGE was also highest in this approach, but these differences 
were marginal. This is most likely due to the fact, that if no 
correction for chronological age is made, there is some vari-
ance in BrainAGE which would be explained by chronologi-
cal age usually, but which will now be predicted by lifestyle 
behavior, which is slightly confounded with chronological 
age. The prediction accuracy measured in MAE was com-
parable between the approaches though. Before regress-
ing chronological age out of BrainAGE in approach 3 it 
was still associated to BrainAGE with p = 0.028, but only 
explaining 0.8% of the variance in the whole sample. This 
was not true in male (R2 = 0.005; p = 0.209), but in female 
(R2 = 0.015, p = 0.047) participants, which was expectable 
since a small correlation between chronological age and 
BrainAGE is visible in females (Fig. 2b). In fact, the associa-
tion between chronological age and BrainAGE in the whole 
sample may be driven by the female participants.

However, from a theoretical perspective, it seems con-
tra-intuitive to include chronological age into a model to 
predict an outcome, which is related to age itself, favoring 
approach 2. Since BrainAGE was still—at least in females—
associated to chronological age, not correcting BrainAGE 
for chronological age would be slightly inaccurate though, 
from a statistical perspective. In our view, approach 3 seems, 
therefore, to be the most appropriate approach, since it does 
not include chronological age as a predictor (to predict 
BrainAGE), but the residual variance of chronological age, 
which is statistically there, is regressed out, nevertheless. 

However, there is no conclusive solution to this issue in the 
present literature (Smith et al. 2019).

As hypothesized, we found a lifestyle-dependent accel-
eration of structural brain aging, where higher lifestyle 
risk predicted higher BrainAGE scores, thus older looking 
brains. This observation is particularly important, since it 
helps explain a significant proportion of the large interin-
dividual variability in structural brain aging of older adults 
(Dickie et al. 2013), which cannot be accounted for by age, 
sex, education or clinical markers, such as BMI or uric acid 
(Arenaza-Urquijo et al. 2015; Christie et al. 2017; Eavani 
et al. 2018; Fjell and Walhovd 2010; Franke et al. 2014; Jag-
ust 2013). In the present sample, the combined lifestyle risk 
score predicted 2.4% (approach 3) of the variance beyond 
sex, education, BMI and cognitive status, which was com-
parable to the amount predicted by physical activity (2.1%) 
and smoking (2.9%), also in approach 3. This is comparable 
to the amount of explained variance reported for lifestyle 
behaviors or health markers in other large epidemiological 
studies (Franke et al. 2014; Jockwitz et al. 2019; Miller et al. 
2016) and also within reasonable range for a large sample 
from a population-based cohort (Bzdok and Ioannidis 2019). 
It is important to note, that even though each variable only 
predicted a small proportion of variance, this variance is 
calculated after correction for those factors usually showing 
a large influence on brain structure: age, sex, education and 
general cognitive status. Even after correction, the general 
association between riskier lifestyle and older looking brains 
remained stable. However, other influences, such as genetic 
variations may have an additional impact on age-related dif-
ferences in brain structure and age predictions (Ning et al. 
2020; Smith et al. 2020).

In a former study, individual lifestyle variables did not 
show a significant effect on cortical surface measures, 
whereas the combined lifestyle risk score did (Bittner et al. 
2019). However, it is important to note, that the former 
study was a vertex-wise whole brain approach, sensitive 
to lifestyle-related regional differences, whereas the pre-
sent study examined the association between lifestyle and 
BrainAGE, reflecting the multidimensional pattern of aging 
aggregated into one marker. Importantly, we quantified the 
effect of combined lifestyle risk on structural brain aging in 
terms of years. This was inspired by Franke et al. (2014), 
who estimated mean BrainAGE in a “risky” and a “healthy” 
group in terms of clinical markers, such as BMI or uric acid. 
Instead of quantifying group differences in terms of years, 
as done by Franke et al. (2014), we estimated the linear 
increase in BrainAGE for each increase in lifestyle risk of 
the specific variable. In consequence, with each increase 
in combined lifestyle risk, brains appear 5.04 months older 
than the “normal” age-related difference in brain structure, 
which the statistical model corrected for. In comparison, 
brains appear 0.6 months older with each pack-year and 
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0.55 months younger with each increase in metabolic equiv-
alent (MET) per week (with, e.g., 4 MET reflecting one hour 
of 10-mph bicycling). Hence, the combined lifestyle risk 
score explained more than 3 months in Brain AGE “in addi-
tion” to smoking in pack-years, as hypothesized. Therefore, 
the combined lifestyle risk score may have higher explana-
tory power, presumably via consideration of over-additive 
and interacting effects between the individual factors when 
quantifying the harmful and protective effects of lifestyle. 
Considering different behaviors of interest simultaneously 
may thus be a fruitful way to explain additional variance in 
brain aging by investigating their cumulative effects.

Associations between individual lifestyle variables 
and BrainAGE

Investigating the four lifestyle behaviors individually 
revealed more smoking and lower physical activity to be the 
strongest contributors to the prediction capacity of lifestyle 
risk on BrainAGE.

Smoking

One of the compelling results of the current study were the 
negative effects of smoking on the aged brain quantified in 
months, which were also not corroborated after correct-
ing for education or cognitive status. Prior studies already 
hinted at an association between smoking and changes in 
GM. Regionally lower GM volume and density for smokers 
compared to non-smoking control participants have been 
reported in the prefrontal cortex and the cerebellum (Brody 
et al. 2004), the posterior cingulum, precuneus, right thala-
mus, and bilateral frontal cortex (Almeida et al. 2008), as 
well as the substantia nigra (Gallinat et al. 2006). Impor-
tantly, all of these studies had a fairly small sample size 
that either included younger adults only [n = 45, age range 
22.4–38.3 years, Gallinat et al. (2006)], older adults only 
[n = 78, age range 71.6–78.9 years; Almeida et al. (2008)], or 
a large age range [n = 36, 21–65 years, Brody et al. (2004)]. 
In addition, results on the association of smoking with 
other brain metrics are quite heterogenous. Higher numbers 
of white matter hyperintensities (Longstreth et al. 2005), 
lower microstructural integrity (Gons et al. 2011), or infarcts 
(Howard et al. 1998) in smokers compared to non-smokers 
were reported. With population-based cohort imaging avail-
able, the sample sizes have substantially increased (Bamberg 
et al. 2015; Caspers et al. 2014; Miller et al. 2016; Van Essen 
et al. 2013), thus increasing generalizability of results to 
the general population. For example, Karama et al. (2015) 
showed that smoking was associated with widespread corti-
cal thinning in a sample of 504 older adults particularly in 
prefrontal cortex, mostly omitting primary sensory areas. 
Still, none of the studies provided a quantification of the 

effect of smoking on the brain. We were able to predict an 
increase of 0.36 months of BrainAGE with each pack-year, 
with 2.9% of BrainAGE being predicted just by smoking 
(approach 3). Translating this result to our older adult study 
sample taking into account the average smoking behavior of 
13.61 pack-years, an overall increase of 4.9 years of Brain-
AGE (13.61 × 0.36 month of BrainAGE) only by smoking 
can be stated.

There was a high variance in BrainAGE in individuals, 
who never smoked (139 female, 114 male, Fig. 4). Within 
this group, BrainAGE scores were very high, as well as very 
low, aggregating to a mean BrainAGE of almost zero. This 
finding is comparable to the considerable variance in corti-
cal thickness in the rarely smoking participants observed by 
Karama et al. (2015). In the current study, the more the par-
ticipants smoked, the stronger was the relationship between 
higher pack-years and higher BrainAGE, suggesting that this 
effect was mostly driven by high lifetime smoking (Fig. 4). 
This was also revealed when comparing never, moderate and 
severe smokers, where the brains of severe smokers (Brain-
AGE = 1.61) appeared significantly older than those of never 
(BrainAGE = − 0.05) and moderate (BrainAGE = − 0.03) 
smokers. It is particularly important to note that this obser-
vation cannot be translated simply to the assumption that 
rare smoking has no effect on the brain. Rather, rare smok-
ing may manifest in other metrics for healthy brain aging, 
even if alterations in brain structure would not be present: 
For example, in our previous study, we found no associa-
tion between smoking and cortical surface measures in older 
adults. Instead, more smoking was associated with higher 
resting-state functional connectivity (RSFC), which may 
be a compensation mechanism for accelerated brain aging 
(Bittner et al. 2019). In addition, activity differences in task-
based fMRI (Lawrence et al. 2002; Tanabe et al. 2011), as 
well as receptor differences between smokers and non-
smokers (Feduccia et al. 2012; Mukhin et al. 2008) were 
described. Studies on RSFC in relation to long-term effects 
of smoking and not acute effects of nicotine are rather rare. 
It may thus be of particular interest to investigate general 
differences in brain function, e.g., in RSFC, associated with 
light smoking (Janes et al. 2012; Pariyadath et al. 2014; 
Zhou et al. 2017), even though light smoking seems not to 
be heavily associated to differences in brain structure.

The underlying mechanisms driving the association 
between smoking and changes in brain structure are still 
unclear. Smoking could potentially act via atherosclerotic 
processes, which may impact the aging brain and thus 
accelerate brain aging (Freund et al. 1993; Mucha et al. 
2006; Prescott et al. 1998; Pujades-Rodriguez et al. 2015). 
Possibly, the measured increase in BrainAGE might also 
be attributable to the direct toxic effects of tobacco smoke 
onto the cerebro-vascular system, which includes oxidative 
stress within the cells and results in apoptosis (Swan and 
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Lessov-Schlaggar 2007). However, since BrainAGE takes 
the whole GM volume of an individual into account, draw-
ing inferences about any molecular mechanisms or disentan-
gle regional differences that drive the association between 
stronger smoking and accelerated brain aging as reflected by 
higher BrainAGE remains for future studies. Still, our results 
provide evidence, that smoking may be one of the detrimen-
tal factors contributing to an unfavorable soil, which then 
together with additional risk factors, promotes alterations 
within the brain or accelerated already existing processes of 
structural decline.

Sex differences in  the  associations between  smoking 
and  BrainAGE Most prior studies assessing the effect of 
smoking on brain structure did not examine sex differences 
or the interaction of sex and smoking (Almeida et al. 2008; 
Brody et al. 2004; Gallinat et al. 2006; Karama et al. 2015; 
Longstreth et al. 2005). To our knowledge, there are only two 
studies addressing this issue, showing that structural differ-
ences associated to smoking may regionally differ depend-
ing on sex (Duriez et al. 2014; Franklin et al. 2014). After 
examining lifestyle effects in the whole study sample, we 
addressed this issue and found no interaction between sex 
and smoking, hinting at a comparable direction and strength 
of association in both sexes. With imaging research focus-
ing more on sex differences (Franke et  al. 2014; Gur and 
Gur 2017; Ritchie et al. 2018; Ruigrok et al. 2014; Wierenga 
et  al. 2018), it may nevertheless be of interest to identify 
lifestyle behaviors that differentially affect male and female 
brains, such that interventions that slow or delay manifesta-
tions of aging can be tailored for sex.

Physical activity and BrainAGE

The protective effect of physical activity on GM volume 
has been discussed to be regionally specific [see review 
by Erickson et al. (2014)]. Our results support that higher 
physical activity is predictive of lower BrainAGE, thus 
younger looking brains. Physical activity, therefore, does 
not only seem to affect specific brain regions, but also the 
multidimensional pattern of brain aging itself. Most previ-
ous studies comprised intervention trainings, where train-
ing was systematic, regular, and highly controlled (Erickson 
et al. 2014). The present study adds to this by demonstrating 
that higher physical activity is associated with decelerated 
brain aging (lower BrainAGE scores) in a large sample of 
“normal” aging older adults using a comprehensive, epide-
miologically motivated measurement of physical activity, 
i.e., the metabolic equivalent (Ainsworth et al. 2000; Bus 
et al. 2011; Floel et al. 2010; Milanovic et al. 2013; Pierce 
et al. 2007; Ruscheweyh et al. 2011; Wagner et al. 2012). 
This measurement is drawn from self-reports that summa-
rize all sorts of sports older adults engage in and is likely 

to reflect the average daily physical activity, in contrast to 
highly controlled intervention settings. The present associa-
tion between self-reported physical activity and BrainAGE 
is, therefore, not as strong as reported effects of fitness train-
ing on, e.g., the hippocampus (Erickson et al. 2011), but is 
likely reflecting a natural, and therefore, more generalizable 
relationship.

Several mechanisms how higher physical activity or fit-
ness levels may act protectively on the aging brain have 
been discussed, such as the upregulation of neurotrophic 
factors, including brain-derived-neurotrophic factor [BDNF, 
(de Melo Coelho et al. 2013; Neeper et al. 1996; Piepmeier 
and Etnier 2015) Ruscheweyh et al. 2011] and granulocyte-
colony stimulating factor (G-CSF; Flöel et al. 2010), which 
significantly impact synaptic efficacy, neuronal connec-
tivity, and use-dependent plasticity. Here, use-dependent 
plasticity may play a crucial role in the sense that physical 
activity as one kind of training would lead to better preser-
vation of those brain structures needed to perform the activ-
ity engaged in (Bittner et al. 2019; Colcombe et al. 2003; 
Vaynman and Gomez-Pinilla 2005; Vaynman et al. 2004). 
Several studies have shown that training-induced preserva-
tion or even adaptation of brain regions is possible in adults 
(Churchill et al. 2002; Draganski et al. 2004; Erickson et al. 
2011; Kramer and Erickson 2007) or older adults in par-
ticular (Boyke et al. 2008). Nevertheless, other studies have 
discussed, that the most important factor for preservation 
of brain structure is effortful learning (Shors 2014). During 
physical activity, both processes are possible, but could not 
be controlled in the epidemiological setting of the present 
study. However, physical activity is widely known for its 
benefitting effects on the general health of the human organ-
ism (World Health Organization 2019). Possibly enhancing 
the resilience of the organism, as well as higher neuronal 
integrity (Engeroff et al. 2019), it may, therefore, contrib-
ute to a more protective soil, where pathological processes 
may have lesser effect (McDonough and Allen 2019). Future 
studies examining specific mechanisms are needed, though.

Sex differences in the associations between physical activ‑
ity and BrainAGE Most previous studies on lifestyle did not 
examine interaction effects of sex, as done in classic psycho-
logical research or specifically conducted sex-stratified anal-
yses, as done in epidemiological research (Erickson et  al. 
2014; Floel et al. 2010, 2008; Ho et al. 2011). Yet, a recent 
review concluded that the sex proportion in physical activ-
ity intervention studies may impact the effect sizes (Kramer 
and Colcombe 2018). A potential reason may be expres-
sion of BDNF and its effect on physical activity, which has 
been shown to differ between the sexes in mice with lower 
expression in females (Venezia et al. 2016). Further, estro-
gens or hormone replacement therapy seem to be related to 
levels of neurotrophins such as BDNF (Garcia-Segura et al. 
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2000) and longer periods of hormone therapy may corrobo-
rate the positive effect of high physical activity in women 
(Erickson et al. 2007). There may also be further differences 
between the two sexes that co-occur with physical activity, 
such as dietary habits (Kramer and Colcombe 2018), the 
specific kind of activity (Churchill et  al. 2002; Colcombe 
et  al. 2003; Floel et  al. 2010; Hayes et  al. 2013; Kramer 
and Colcombe 2018), as well as differences in metabolism 
(Burd et al. 2009; Wu and O’Sullivan 2011) to be consid-
ered in future studies. Therefore, we specifically addressed 
sex differences in subsequent analyses. We did not find a 
significant interaction effect of sex and physical activity on 
BrainAGE. Post hoc stratification of the sample for the two 
sexes revealed that physical activity was significantly pre-
dictive for BrainAGE in male (p = 0.005), but not in female 
participants (p = 0.169). This, however, may be due to the 
smaller proportion of females in the whole sample. Hence, 
it is possible, that the effect is present in females, but even 
larger sample sizes are needed to detect it in females as well 
(i.e., more power). The statistical significance is non-con-
clusive, hence. The picture gets more unambiguous, when 
inspecting the amount of predicted variance in BrainAGE 
(R2). Here, physical activity was predictive of 3.4% of vari-
ance in BrainAGE in males, but of a strikingly different 
0.8% of variance in females. This hints at physical activity 
contributing more to BrainAGE prediction in males.

Interestingly, the (in-sample) prediction accuracy meas-
ured in MAE for any of the models examining lifestyle 
was highest in females. In females, the lowest MAE was 
3.70 years in the fully adjusted model examining physi-
cal activity. For comparison, the lowest MAE in males 
was MAE = 3.99 years (fully adjusted model for the com-
bined lifestyle risk score) and in the whole subsample 
MAE = 3.88 years (fully adjusted model examining pack-
years) showing that factors contributing to prediction capac-
ity may differ between males and females (Jiang et al. 2020).

Interestingly, the most accurate model for the prediction 
of BrainAGE in females was also the model, where physical 
activity did not significantly contribute to prediction, but 
which was mostly driven by cognitive status (fully adjusted 
model examining physical activity). Note that all models 
including cognitive status (measured using the DemTect) 
predicted a relatively high proportion of variance in Brain-
AGE in females (up to 7.4% in approach (i) in combina-
tion with the combined lifestyle risk score). This propor-
tion was considerably higher in females than in males (3.9% 
explained variance within the same model). Hence, cogni-
tive status may in females be a more important mediator 
when it comes to the prediction of structural brain aging 
from lifestyle behavior, whereas lifestyle behavior may con-
tribute more to prediction in males.

Thus, the current study found hints for sex differences 
within this association, but larger samples are needed. 

Taken together, higher physical activity seems to be one 
lifestyle behavior that may be predictive of decelerated 
brain aging, in line with previous studies. As Kramer and 
Colcombe (2018) state in their recent review, it can be of 
great help to disentangle the association between physical 
activity and BrainAGE to facilitate, e.g., large exercise 
programs within the communities.

Alcohol consumption and social integration

We did not find an association between BrainAGE and social 
integration or alcohol consumption. Regional differences in 
brain structure associated to social integration, as well as 
alcohol consumption could be present, but might not have 
been identifiable with the specific approach of the current 
study. Several explanations might hold for these observa-
tions. To date, the number of studies investigating social 
integration in relation to structural brain decline in older 
adults is relatively small (for a recent review, see Anaturk 
et al. 2018). In addition, most studies report effects for com-
posite measurements of cognitive and social activities, which 
do not clearly differentiate between social and cognitive 
components (Gow et al. 2012; Hafsteinsdottir et al. 2012; 
Vaughan et al. 2014). Further, composite measures for social 
activities when investigated in combination with additional 
lifestyle behaviors (Bittner et al. 2019) have been assessed. 
Therefore, future studies could shed light on effects of social 
activities with low cognitive versus high cognitive demands 
to answer the question whether the cognitive or the social 
component of social integration contributes to brain reserve, 
the amount to which age-related GM loss can be tolerated 
without showing deficiencies (Stern, 2012). In addition, 
we used a quantitative measurement of social integration. 
Studies have shown that older adults engage in relationships 
with a focus on quality rather than quantity (Carstensen et al. 
1999). Hence, future studies would be needed to address 
the association between quality of relationships and brain 
aging. Further, differences in brain structure related to social 
integration may be regional or subtle (James et al. 2012), 
which also seems to be the case for alcohol consumption 
(Topiwala et al. 2017). Even though accelerated brain aging 
has been shown in patients with alcoholism (Pfefferbaum 
et al. 1995), differences related to alcohol consumption in 
the normal population may not be as strong or only identifi-
able if several risk behaviors co-occur (Bittner et al. 2019). 
Further, alcohol consumption may affect other brain param-
eters earlier such as WM lesions (den Heijer et al. 2004) or 
RSFC (Vergara et al. 2017). In addition, effects of alcohol 
consumption may also be non-linear (Mukamal et al. 2001), 
which we could not identify in the present study, but might 
be interesting for future studies to further investigate into.
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Strengths and limitations

Strengths of the present study include the large sample size, 
the older age range of the sample, and the use of BrainAGE as 
a state-of-the art imaging biomarker. By conceptualizing brain 
aging in this biomarker, the multivariate dataset and the statis-
tical analyses could be reformulated into intuitive and straight-
forward results, i.e., the quantification of lifestyle effects in 
meaningful months of additional brain age.

The present study has a cross-sectional design which does 
not allow conclusions about directionality of effects. Even 
without a longitudinal design, though, our approach hints at 
individuals with higher risk for accelerated brain aging: Com-
paring the apparent image-based age of individuals’ brains 
enables a measure of whether a participant’s brain appears to 
be older (or younger) than the average age-matched data of 
the sample and captures deviation from expected, i.e., typi-
cal development (Kaufmann et al. 2019). For future studies, 
regional specificity, i.e., disentangling the relevance of dif-
ferent regions for machine-learning-based brain age predic-
tion would be highly desirable (Cole and Franke 2017). Fur-
ther, investigating the relevance of different brain features, 
e.g., functional activation patterns, as well as functional and 
structural connectivity, will be interesting in the future. As 
BrainAGE enables the identification of individuals at higher 
risk, together with the straightforward statistics and intuitive 
quantification of lifestyle effects in meaningful months, it still 
provides a useful framework to capture relevant aspects of 
variability in structural brain aging and to examine the high 
variability in brain reserve (Stern, 2017).

Further, it is important to mention that, based on established 
approaches in epidemiological research (Schmermund et al. 
2002), the lifestyle variables included in our combined lifestyle 
risk score were measured using different time windows (e.g., 
physical activity was assessed for the last 4 weeks, smoking 
as the number of cigarettes smoked over the whole lifetime). 
Assessments that refer to specifically defined short time frames 
(e.g., a month, a week) seem to be more reliable indicators of 
long-term behavior than self-reports referring to longer time 
frames, e.g., a whole year (Del Boca and Darkes 2003).

In addition, all lifestyle habits were assessed using self-
reports, which makes it impossible to rule out memory effects 
or social desirability bias. Self-report measurements have nev-
ertheless been shown to be valid and reliable (Del Boca and 
Darkes 2003) and thus suitable in such an epidemiological 
cohort setting.

Conclusion

Higher lifestyle risk, represented by a combined life-
style risk score, contributes to accelerated brain aging as 
revealed by BrainAGE, a meaningful imaging biomarker. 
Higher lifetime smoking, as well as lower physical activity 
contributed most to this association. We found hints at a 
stronger relation between physical activity and BrainAGE 
for males than females, but future studies are needed to 
further evaluate the potentially differential relevance of 
this influencing factor for brain health between the sexes. 
Further, more research is needed to elucidate the relation 
between alcohol consumption and brain structure, as well 
as social integration and brain health, e.g., by disentan-
gling the cognitive and social components. In summary, 
lifestyle seems to be a fruitful target for identifying behav-
iors that may contribute to a more resilient organism, and 
therefore, slow neuronal changes and related or result-
ing cognitive impairment. Future studies are warranted 
to examine the underlying mechanisms. Considering co-
occurrences between several lifestyle behaviors as effects 
of interests, rather than as a nuisance may enable us to 
better understand individual trajectories of brain aging in 
the older population and why people age differently.
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