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Abbreviations 60 

AUPRC Area under the precision-recall curve 61 

BG ROI Basal ganglia region of interest 62 

CSF  Cerebrospinal fluid 63 

CSO ROI Centrum semiovale region of interest 64 

DSC  Dice similarity coefficient 65 

DRIPS Domain Randomisation for Image-based PVS Segmentation 66 

FFT  Fast Fourier transformation 67 

IFFT  Inverse Fast Fourier transformation 68 

MRI  Magnetic resonance imaging 69 

PVS   Perivascular spaces 70 

ROC  Receiver operating characteristic curve 71 

ROI  Region of interest 72 

RORPO Ranking the orientation responses of path operators 73 

SNR  Signal-to-noise ratio 74 

SVF  Stationary velocity field 75 

TE  Echo time 76 

TR  Repetition time 77 

WMH  White matter hyperintensities 78 
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Abstract  79 

Perivascular spaces (PVS) are emerging as sensitive imaging markers of brain health. 80 

Yet, accurate out-of-sample PVS segmentation remains challenging since existing 81 

methods are modality-specific, require dataset-specific tuning, or rely on manual labels 82 

for (re-)training. We propose DRIPS (Domain Randomisation for Image-based PVS 83 

Segmentation), a physics-inspired framework that integrates anatomical and shape 84 

priors with a physics-based image generation process to produce synthetic brain 85 

images and labels for on-the-fly deep learning model training. By introducing variability 86 

through resampling, geometric and intensity transformations, and simulated artefacts, 87 

it generalises well to real-world data. We evaluated DRIPS on MRI data from five 88 

cohorts spanning diverse health conditions (N = 165; T1w and T2w, isotropic and 89 

anisotropic imaging) and on a 3D ex vivo brain model reconstructed from histology. 90 

We evaluated its performance using the area under the precision–recall curve 91 

(AUPRC) and Dice similarity coefficient (DSC) against manual segmentations and 92 

compared it with classical and deep learning methods, including Frangi, RORPO, 93 

SHIVA-PVS, and nnU-Net. Only DRIPS and Frangi achieved AUPRC values above 94 

chance across all cohorts and the ex vivo model. On isotropic data, DRIPS and nnU-95 

Net performed comparably, outperforming the next-best method by a median of 96 

+0.17–0.39 AUPRC and +0.09–0.26 DSC. On anisotropic data, DRIPS outperformed 97 

all competitors by a median of +0.13–0.22 AUPRC and +0.07–0.14 DSC. Importantly, 98 

its performance was not associated with white matter hyperintensity burden. DRIPS 99 

delivers accurate, fully automated PVS segmentation across heterogeneous imaging 100 

settings, reducing the need for manual labels, modality-specific models, or cohort-101 

dependent tuning. 102 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2025. ; https://doi.org/10.1101/2025.10.22.25337423doi: medRxiv preprint 

https://doi.org/10.1101/2025.10.22.25337423
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

Keywords: Perivascular spaces; Segmentation; Domain Randomisation; Deep 103 

Learning; Magnetic Resonance Imaging104 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2025. ; https://doi.org/10.1101/2025.10.22.25337423doi: medRxiv preprint 

https://doi.org/10.1101/2025.10.22.25337423
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

1 Introduction 105 

Perivascular spaces (PVS) are anatomical passageways that surround arterioles, 106 

capillaries, and venules in the brain and an integral part of the neurovascular unit 107 

(Gouveia-Freitas and Bastos-Leite, 2021; Wardlaw et al., 2020). Collectively, PVS 108 

form a brain-wide network of conduits for cerebrospinal fluid (CSF) circulation 109 

(Hirschler et al., 2025; Wardlaw et al., 2020, 2009; Yamamoto et al., 2024), a function 110 

that underlies the clearance of metabolic and neurotoxic waste products (Braun and 111 

Iliff, 2020; Hablitz and Nedergaard, 2021; Iliff et al., 2014, 2012; Mestre et al., 2018; 112 

Rasmussen et al., 2018; Wardlaw et al., 2020). These spaces are dynamic, with the 113 

capacity to shrink and enlarge, at times reaching a calibre that renders them visible in 114 

vivo on magnetic resonance imaging (MRI) at standard clinical field strengths (1.5 T / 115 

3 T) (Kern et al., 2023; Kim et al., 2023; Lynch et al., 2023; Menze et al., 2024; Vikner 116 

et al., 2022). PVS enlargement is pathological (Bown et al., 2022; Francis et al., 2019; 117 

Okar et al., 2023; Wardlaw et al., 2020) and is considered an early structural change 118 

of impaired cerebrovascular and brain waste clearance function (Francis et al., 2019; 119 

Ineichen et al., 2022; Okar et al., 2023; Schreiber et al., 2023; Wardlaw et al., 2020; 120 

Waymont et al., 2024).  121 

The growing recognition of PVS as a non-invasive imaging marker of compromised 122 

brain health function has prompted the development and large-scale deployment of 123 

computational methods for their quantification and monitoring (Smith et al., 2019; 124 

Waymont et al., 2024). Broadly, the literature describes two strategies: classical and 125 

machine learning based methods (Waymont et al., 2024). Classical methods use the 126 

morphology and CSF-like signal of PVS to distinguish them from other brain structures 127 

and, when multimodal data are available, from other concomitant lesions, such as 128 
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white matter hyperintensities (WMH) and lacunar infarcts (Ballerini et al., 2020, 2018; 129 

Barisano et al., 2025; Barnes et al., 2022; Bernal et al., 2021b, 2020; Boespflug et al., 130 

2018; Duarte Coello et al., 2024; Menze et al., 2024; Schwartz et al., 2019; Valdés 131 

Hernández et al., 2024). These well-established methods offer high sensitivity (Bernal 132 

et al., 2022)—a double-edged sword that often necessitates careful parameter tuning 133 

and post-processing to minimise false positives (Ballerini et al., 2018; Bernal et al., 134 

2022, 2020; Valdés Hernández et al., 2024). Machine learning methods, on the other 135 

hand, leverage supervised learning (Boutinaud et al., 2021a; Cai et al., 2024; Chai et 136 

al., 2025; Dubost et al., 2019a, 2019b; González-Castro et al., 2016; Hou et al., 2017; 137 

Lian et al., 2018; Park et al., 2016; Pham et al., 2024; Rashid et al., 2023; Zhang et 138 

al., 2017). Within this category, deep learning has emerged as the most widely 139 

adopted method (Waymont et al., 2024). The main advantage of deep learning is that, 140 

with sufficiently large, diverse, and well-annotated datasets, models are able to 141 

overcome some of the limitations of classical strategies. Nonetheless, the scarcity of 142 

such datasets (Sudre et al., 2024) generally hinders their ability to generalise 143 

effectively to unseen datasets (Billot et al., 2023a; Chalcroft et al., 2025). This, in turn, 144 

constrains their broader applicability beyond their training sets. 145 

Domain randomisation has emerged as an alternative to address this generalisation 146 

problem (Tobin et al., 2017). In contrast to data augmentation—which applies 147 

predefined spatial and intensity transformations to existing images—domain 148 

randomisation uses procedural image generation models, conditioned on 149 

segmentations with fully randomised parameters, to create synthetic datasets for 150 

training deep learning models. The diversity of training samples enables models 151 

trained with domain randomisation to learn domain-independent features that 152 

characterise target structures well. SynthSeg is an example of a successful method 153 
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taking advantage of domain randomisation (Billot et al., 2023a). It is a model that 154 

segments brain structures on real MRI acquired with diverse sequences and 155 

modalities without retraining, despite being trained exclusively on synthetic data. Since 156 

its introduction in the early 2020s, approaches leveraging domain randomisation have 157 

been successfully applied to a variety of tasks, including skull-stripping (Hoopes et al., 158 

2022), segmentation of brain structures (Billot et al., 2023a, 2023b), WMH (Laso et 159 

al., 2023), and stroke lesions (Chalcroft et al., 2025), as well as super-resolution 160 

(Iglesias et al., 2023) and image registration (Hoffmann et al., 2024). 161 

Realism in synthetic data generation is not essential; rather, it is crucial that generated 162 

data pose challenges comparable to real-world scenarios, enabling networks to learn 163 

robust and transferable features (Billot et al., 2023a). For synthetic PVS data 164 

generation, Bernal et al. (2022b) developed an open-source physics-inspired 165 

computational model that creates 3D digital reference objects containing PVS-like 166 

structures distributed throughout the brain. The generation process involved inserting 167 

randomly oriented tubular structures into a high-resolution head model, followed by k-168 

space sampling, motion artefact simulation, and Rician noise corruption to produce 169 

low-resolution T2w-like images. Although it was originally conceived for method 170 

benchmarking, this computational model may serve as a basis for data generation 171 

and, when combined with domain randomisation, may facilitate training of deep 172 

learning algorithms with improved generalisability (Bernal et al., 2022). 173 

Here, we introduce DRIPS (Domain Randomisation for Image-based PVS 174 

Segmentation), the first physics-inspired domain randomisation framework specifically 175 

developed for accurate out-of-sample PVS segmentation. DRIPS accurately 176 

segmented PVS in imaging data acquired with multiple imaging sequences and 177 

resolutions from patients with varying health conditions. It performed robustly across 178 
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all these settings and frequently surpassed both classical image-processing and deep 179 

learning methods. 180 

2 DRIPS 181 

DRIPS is a domain randomisation framework specifically designed for out-of-sample 182 

PVS segmentation (Figure 1). It integrates anatomical and shape priors of the human 183 

head and PVS with a physics-inspired procedural image generation process to create 184 

synthetic brain images and corresponding label maps. It then uses these synthetic 185 

datasets, generated on the fly, to train segmentation networks. By introducing 186 

variability through random resampling, geometric transformations, intensity sampling, 187 

and simulated MR artefacts, DRIPS produces models that achieve high segmentation 188 

accuracy and generalise effectively to real-world data. The following sections provide 189 

detailed descriptions of each step. 190 
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 191 

Figure 1. Schematic of DRIPS. (A) DRIPS is a domain randomisation framework that trains 192 
segmentation networks for out-of-sample PVS segmentation. It combines anatomical and shape priors 193 
of the human head and PVS with physics-inspired image generation to create synthetic brain images 194 
and corresponding label maps containing PVS-like structures. It then trains segmentation networks—195 
here exemplified with a U-Net—on these synthetic image–label pairs. By exposing networks to broad 196 
imaging variability during training, DRIPS achieves accurate PVS segmentation across diverse cohorts, 197 
modalities, and acquisition settings. (B) Starting from anatomical head atlases with added synthetic, 198 
tortuous PVS-like structures, DRIPS procedurally generates heterogeneous synthetic brain images 199 
through random resampling, non-linear and affine transformations, intensity sampling, and typical MR 200 
image corruptions and artefacts (motion artefacts, Rician noise, bias fields). Red-circled regions in the 201 
procedural image generator correspond to zoomed-in views. 202 
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2.1 Reference model 203 

2.1.1 Head model 204 

We used 840 three-dimensional atlases derived from T1w and FLAIR scans of the 205 

ADNI database and CSVD Magdeburg cohorts as head models. Each atlas was a 206 

segmentation map with 1 mm³ resolution, in which every voxel was assigned to a 207 

specific class, including the lateral ventricles, white matter, WMH, cortical grey matter, 208 

cerebral white matter, cerebellar grey matter, brain stem, subcortical structures, or 209 

extracranial structures (Billot et al., 2023a). We used SynthSeg (Billot et al., 2023a) 210 

and LST-AI (Wiltgen et al., 2024) to obtain whole-brain parcellations and WMH masks, 211 

respectively. To introduce further anatomical variability, we applied random nonlinear 212 

diffeomorphic deformations to the original set of atlases. Specifically, we sampled a 213 

small stationary velocity field (SVF; 10 × 10 × 10 × 3) from a zero-mean Gaussian 214 

distribution, with standard deviation 𝜎!"# 	 randomly drawn from a uniform distribution. 215 

The range of 𝜎!"# 	 was set from 0 to 4 to allow for varying degrees of deformation. We 216 

then upsampled this field to full image resolution using trilinear interpolation to obtain 217 

a high-resolution SVF. Finally, we warped the original label map with this deformation 218 

field using nearest-neighbour interpolation to produce deformed brain atlases. 219 

2.1.2 PVS model 220 

We then added synthetic PVS-like structures to the generated head models. Although 221 

PVS are commonly described as tubular in clinical studies (Wardlaw et al., 2020), they 222 

do not conform to strictly Euclidean shapes and often exhibit tortuous geometries 223 

(Bernal et al., 2022). To capture this non-Euclidean morphology and have flexibility in 224 
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representing PVS-like structures, we modelled them as tortuous tubular structures 225 

using the following parametric equation: 226 

𝑥(𝑡) = 	0, 𝑦(𝑡) = 	𝑐𝑜𝑠(𝛼𝑡), 𝑧(𝑡) = 	𝑡, 227 

where 𝑡	 ∼ 𝒰(𝑡$%& , 𝑡'()') and 𝛼	 ∼ 	𝒰(𝛼$%& , 𝛼'()') control the length and tortuosity of 228 

the generated PVS. Longer and more tortuous PVS structures are obtained by 229 

increasing 𝑡 and decreasing 𝛼. We allowed 𝑡 to vary between 2 and 10 voxels and 𝛼 230 

between 1/10 to 1/5. We placed these synthetic PVS in random locations within the 231 

white matter (normal-appearing and hyperintensities) and subcortical grey matter 232 

regions. We aligned each PVS towards the lateral ventricles, and to prevent clustering 233 

near the brain’s centre, we used a stratified jittered sampling strategy. 234 

2.2 Procedural synthetic image generation 235 

We developed a procedural image generation model to create synthetic images for 236 

training the segmentation network. Using the head and PVS models, we generated 237 

synthetic images on the fly with fully randomised parameters, varying image 238 

intensities, contrasts, resolutions, and artefacts within each batch. The individual steps 239 

for synthetic data generation are illustrated in Figure 1 and described in detail below: 240 

2.2.1 Resampling and voxel size variability 241 

To enable the model to process scans acquired at different voxel sizes, we generated 242 

synthetic images and label maps with varying voxel sizes. We achieved this by 243 

resampling the input label maps to a randomly selected target voxel size. The target 244 

voxel size was randomly chosen on-the-fly during training, with each dimension 245 

varying between 0.5 mm and 4 mm to enable the processing of both research and 246 
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clinical scans. We resampled label maps using nearest-neighbour interpolation to 247 

preserve the original discrete voxel values. 248 

2.2.2 Affine transformations 249 

We applied random affine transformations to the label maps to increase anatomical 250 

variability and, at the same time, to preserve structural integrity. Rotation, scaling, 251 

shearing, and translation parameters were randomly selected, with all values sampled 252 

from uniform distributions (see (Billot et al., 2023a) for more information). 253 

2.2.3 Random intensity generation 254 

We assigned each anatomical structure a single random intensity, sampled from a 255 

standard uniform distribution 𝒰(0, 1). This procedure varied structure intensities 256 

across images, eliminating consistent local patterns and forcing the model to rely on 257 

shape and spatial information for segmentation. 258 

2.2.4 Motion artifacts 259 

Motion artefacts are a common source of image degradation in MRI and can markedly 260 

affect the visibility and quantification of fine structures such as PVS (Bernal et al., 261 

2022). Owing to their thin, elongated morphology, PVS are particularly susceptible to 262 

being mistaken for motion streaks, making artefact mitigation especially critical for this 263 

application. We simulated rotational motion during k-space acquisition using a 264 

composite k-space model (Bernal et al., 2022, 2021a; Shaw et al., 2020).  265 

We first rotated the original synthetic volume twice by random angles within [−15°, 15°] 266 

around random axes and compute the k-space of both the original and rotated 267 

volumes. We then generated a composite k-space by taking between 50% and 100% 268 

of the data from the original volume and replacing the remainder with data from the 269 
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rotated volumes along a randomly selected axis. Finally, we transformed the resulting 270 

composite k-space to image space to produce a motion-corrupted image. The level of 271 

displacement between consecutive frames and the time at which the motion occurs 272 

determines the severity and appearance of the motion artefacts in the resulting image 273 

(Figure 2).  274 

 275 

Figure 2. Simulation of motion artefacts in DRIPS. Motion was modelled in k-space by combining 276 
data from the original and randomly rotated volumes along a chosen axis. Varying the fraction of k-277 
space segments taken from the original and rotated versions and the "timing” of motion yielded different 278 
levels of blurring and ghosting. Abbreviation: IFFT/FFT: (inverse) fast Fourier transformation 279 

2.2.5 Rician noise 280 

MRI data are inherently affected by noise originating during acquisition in k-space, 281 

where additive white Gaussian noise affects both the real and imaginary components 282 

of the complex signal (Gudbjartsson and Patz, 1995). Following transformation into 283 

the spatial domain and magnitude reconstruction, this noise takes a Rician distribution. 284 

To add Rician-distribution noise to the images, we added uncorrelated additive white 285 

Gaussian noise to the real and imaginary channels of the combined k space. The 286 

Gaussian noise standard deviation was computed as 𝜎*%(+, = 𝜇+()*-$/10!./!"/12, with 287 
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the SNR in decibels sampled from a uniform distribution 𝒰(𝑆𝑁𝑅3(*, 𝑆𝑁𝑅3-4). We set 288 

𝑆𝑁𝑅3(* and 𝑆𝑁𝑅3-4 to 5 dB and 40 dB to simulate a broad spectrum of image noise. 289 

2.2.6 Bias field inhomogeneity 290 

We modelled bias field corruption to mimic MRI intensity inhomogeneities arising from 291 

B-field inhomogeneities and magnetic field variations. Following the approach in (Billot 292 

et al., 2023a), we sampled a 4 × 4 × 4 Gaussian random volume 𝜎5, upsampled it to 293 

image resolution for smooth variation, exponentiated to enforce positive multiplicative 294 

effects, and applied it to the synthetic image. We normalised intensities to [0, 1] and 295 

subjected the image to a random Gamma transformation to introduce additional non-296 

linear signal variations. 297 

2.2.7 Final training pair 298 

Figure 3 presents four examples of synthetically generated images with their 299 

corresponding label maps, illustrating the variability in brain shape, structure, and 300 

intensity introduced by DRIPS. These DRIPS-generated pairs can be used as input 301 

and ground truth for training segmentation models. 302 
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 303 

Figure 3. Synthetic brain images with corresponding ground truths, obtained using the 304 
proposed domain randomisation method. Note that synthetic images vary, among other aspects, in 305 
anatomy, orientation, intensity, PVS distribution, and levels of Rician noise, motion artefacts, and 306 
inhomogeneities. 307 

Synthetic brain image Zoomed-in view Zoomed-in PVS map 
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2.3 DRIPS-based model training and testing 308 

DRIPS provides a basis for training segmentation networks for out-of-sample PVS 309 

segmentation. In this work, we employed a 3D U-Net as the segmentation model, a 310 

well-established architecture capable of capturing both local and global spatial 311 

features critical for accurate segmentation. We note that the framework is architecture-312 

agnostic and can be readily adapted to alternative architectures. 313 

The 3D U-Net consisted of five encoding and five decoding levels. Each level had two 314 

convolutional layers with kernels of size 3 × 3 × 3, followed by a batch normalisation 315 

layer and max pooling or upsampling layers, depending on whether the level was part 316 

of the encoding or decoding part, respectively. All convolutional layers employed an 317 

exponential linear unit activation, except for the final layer, which had a softmax 318 

activation. The number of kernels per level doubled after each max pooling and halved 319 

after each upsampling layer. The first layer contained 24 feature maps. The network 320 

had skip connections to transfer feature maps from the encoding path to the decoding 321 

path. 322 

2.3.1 Training on synthetic data 323 

We trained the segmentation network in DRIPS for 50 epochs, each comprising 5000 324 

batches of size 1, with each image–label pair generated on the fly by the procedural 325 

image generator. We used the Adam optimiser (learning rate of 10-4) and a generalised 326 

Dice loss function for model optimisation. The generalised Dice loss function for 327 

multiple classes is given by (Milletari et al., 2016): 328 

Generalised	Dice	Loss(GT, 𝑆) = 1 −	 G
2 ∙ ∑ 𝐺𝑇6(𝑥, 𝑦, 𝑧)	𝑆6(𝑥, 𝑦, 𝑧)4,8,9

∑ 𝐺𝑇6(𝑥, 𝑦, 𝑧)1 + 𝑆6(𝑥, 𝑦, 𝑧)14,8,96∈{2,<}

, 329 
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where 𝑐 ∈ {0,1} denotes the considered classes (0: background, 1: PVS), and 𝐺𝑇6 and 330 

𝑆6 are the ground truth and soft probability map for class 𝑐, respectively. We 331 

implemented the segmentation model in Keras with a TensorFlow backend. Training 332 

took approximately twelve days on an NVIDIA A100 Tensor Core GPU. 333 

2.3.2 Testing on real data 334 

To evaluate the model on real data, we first normalised image intensities before 335 

feeding the scans into the network (Billot et al., 2023a). Inference took approximately 336 

ten seconds on an NVIDIA A100 Tensor Core GPU and 60 seconds on CPU.  337 

Contrast agnosticism encourages models to prioritise shape over intensity. Though 338 

advantageous for generalisation, this technique makes models prone to detecting 339 

“tubular” structures regardless of whether their intensity profiles match those of PVS. 340 

For example, although PVS appear hypointense in T1w imaging, sections of the 341 

internal and external capsules—which are not hypointense in this modality—were 342 

sometimes flagged as potential PVS (non-zero response). To restrict detection to 343 

hypointense structures in T1w images and hyperintense structures in T2w images, we 344 

thus applied the Laplacian operator during post-processing, retaining regions with 345 

positive and negative Laplacian values, respectively. 346 

3 Evaluation on real data 347 

3.1 Cohorts and ground truth 348 

We tested DRIPS on images and manual PVS segmentations from 165 participants 349 

from five cohorts: post-COVID Brain (PCB; N=42) (Besteher et al., 2022), EBBIVD 350 

(N=18), heart failure with preserved ejection fraction on cerebral microangiopathy 351 
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(HIM; N=39; DRKS00031583) (Müller et al., 2024), MagDeburger DrAinage-Reserve-352 

Score (MD-DARS; N=6) (Neumann et al., 2022), and ADNI-3 (N=60). Further 353 

information can be found in Table 1. Ethical approval was granted by the Ethics 354 

Committees of the University Hospital Magdeburg for the EBBIVD, HIM, and MD-355 

DARS cohorts, and by the Ethics Committee of Jena University Medical School for the 356 

PCB cohort, and by Institutional Review Boards of all participating centres for the 357 

ADNI-3 cohort. All participants provided written informed consent in accordance with 358 

the Declaration of Helsinki. 359 

Data used in the preparation of this article were obtained from the Alzheimer's Disease 360 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched 361 

in 2003 as a public-private partnership. The original goal of ADNI was to test whether 362 

serial magnetic resonance imaging, positron emission tomography, other biological 363 

markers, and clinical and neuropsychological assessment can be combined to 364 

measure the progression of mild cognitive impairment and early Alzheimer's disease. 365 

The current goals include validating biomarkers for clinical trials, improving the 366 

generalizability of ADNI data by increasing diversity in the participant cohort, and to 367 

provide data concerning the diagnosis and progression of Alzheimer’s disease to the 368 

scientific community. For up-to-date information, see adni.loni.usc.edu 369 

Table 1. Imaging protocols, and PVS and WMH burden across cohorts. The table summarises the 370 
imaging sequences, acquisition parameters, and scanner specifications used for manual PVS 371 
segmentation across the PCB, EBBIVD, HIM, MD-DARS, and ADNI cohorts. We also report PVS and 372 
WMH burden separately for the BG and CSO ROIs, presented as median counts, volumes, and 373 
fractional volumes, with interquartile ranges in brackets. Fractional volumes represent the volume of 374 
PVS within a region of interest relative to the volume of the region. 375 

 PCB EBBIVD HIM MD-DARS ADNI 
N 42 18 39 6 60 

Clinical groups 
Normal cognition 

post-COVID 
syndrome 

Hypertensive 
arteriopathy 

Cerebral amyloid 
angiopathy 

Individuals with 
heart failure with 

preserved ejection 
fraction 

Individuals 
spanning the 
Alzheimer’s 

disease continuum 

Normal 
cognition 

Mild cognitive 
impairment 
Alzheimer’s 

disease 
Imaging 
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Sequence for 
PVS 
segmentation 

3D T1w MPRAGE 2D T2w TSE 2D T2w TSE 2D T2w TSE 3D T1w 
MPRAGE 

Key parameters 
TR = 2400 ms 
TE = 2.22 ms 

FA = 9° 

TE = 73 ms 
TR = 6500 ms 

TE = 73 ms 
TR = 6500 ms 

TE = 73 ms 
TR = 6500 ms 

TE = min full 
TR = 2300 ms 
TI = 900 ms 

FA = 9° 
Voxel size 
[mm³] 0.8 × 0.8 × 0.8 0.5 × 0.5 × 2.0 0.5 × 0.5 × 2.0 0.5 × 0.5 × 2.0 1.0 × 1.0 × 1.0 

Magnetic field 
strength [T] 3 3 3 3 3 

Scanner 
model/vendor 

Siemens Tim Trio 
(Siemens 

Healthineers, 
Erlangen, 
Germany) 

Skyra (Siemens 
Healthineers, 

Erlangen, 
Germany) 

Skyra (Siemens 
Healthineers, 

Erlangen, 
Germany) 

Skyra (Siemens 
Healthineers, 

Erlangen, 
Germany) 

Siemens, GE, 
and Philips 

(multi-vendor) 

PVS burden      

BG PVS count 397 
[311–506] 

890 
[643–1368] 

656 
[499–1053] 

816 
[526, 1033] 

36 
[17–67] 

BG PVS volume 
[ml] 

0.263 
[0.212–0.342] 

0.779 
[0.592–1.255] 

0.587 
[0.435–0.928] 

0.699 
[0.459, 0.992] 

0.051 
[0.022–0.099] 

Fractional BG 
PVS volumes 
(%) 

0.587 
[0.416–0.611] 

1.865 
[1.394–2.768] 

1.172 
[0.945–1.839] 

1.585 
[1.118–2.046] 

0.117 
[0.052–0.232] 

CSO PVS count 1370 
[782–2450] 

7692 
[5204–9056] 

6379 
[5012–8227] 

6424 
[3943, 7143] 

510 
[267, 858] 

CSO PVS 
volume [ml] 

0.976 
[0.545–1.686] 

8.471 
[5.854–9.552] 

6.853 
[5.266–8.691] 

6.9705 
[4.275, 7.397] 

0.900 
[0.479, 1.4305] 

Fractional CSO 
PVS volumes 
(%) 

0.344 
[0.192–0.652] 

3.027 
[1.852–3.801] 

2.200 
[1.678–2.822] 

2.446 
[1.468–2.579] 

0.387 
[0.216–0.598] 

WMH burden      
BG WMH 
volume [ml] 

No FLAIR  
imaging 

No FLAIR 
imaging 

0.218 
[0.017–0.837] 

0.293 
[0.032–1.537] 

0.408 
[0.103–0.878] 

CSO WMH 
volume [ml] 

No FLAIR  
imaging 

No FLAIR  
imaging 

1.510 
[0.243–7.573] 

2.081 
[0.155–9.819] 

3.364 
[1.374–11.382] 

 376 

Under the guidance of experienced neuroradiologists, four medical residents and one 377 

neuroscientist segmented PVS manually using either Mango or ITK-SNAP. PVS 378 

segmentation was performed on T1w scans for PCB and ADNI, and on T2w scans for 379 

EBBIVD, HIM, and MD-DARS, following STRIVE criteria (Duering et al., 2023). The 380 

smallest available paint tool was used to manually delineate PVS across all axial slices 381 

throughout the entire brain. FLAIR sequences were taken into account, when 382 

available, to minimise the inclusion of WMH. 383 

3.2 Evaluation metrics 384 

We assessed PVS segmentation using voxel-wise and lesion-wise Dice similarity 385 

coefficients (DSCvoxel and DSClesion) and the area under the precision–recall curve 386 

(AUPRC). DSCvoxel quantifies spatial overlap between the predicted and ground-truth 387 
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binary maps within the ROI. DSClesion evaluates object-wise agreement after 388 

connected-component labelling, measuring overlap between individual predicted and 389 

reference PVS (e.g., one-inside-the-another criterion) (Maier-Hein et al., 2024). 390 

AUPRC summarises segmentation performance across all possible thresholds. We 391 

opted for precision–recall over receiver operating curves given the pronounced class 392 

imbalance (Maier-Hein et al., 2024). 393 

Since all of our evaluations are performed out-of-sample, discrepancies may arise 394 

between how PVS were segmented in the training data and how they appear in an 395 

unseen dataset (e.g. where PVS boundaries end). To mitigate this potential mismatch 396 

and ensure a fair comparison across methods, we derived DSC values by thresholding 397 

each output at the operating point on the precision–recall curve that maximised 398 

segmentation performance. In practice, this corresponds to the threshold at which the 399 

trade-off between sensitivity and precision yields the highest DSCvoxel. 400 

Generalisation criterion. Although generalisation is inherently continuous, we 401 

defined a practical criterion for it based on the expected performance under random 402 

chance. Methods with performance overlapping with or below the chance-level 403 

AUPRC were considered to have failed to generalise. The chance-level AUPRC value 404 

is equivalent to the prevalence of the positive class within a given region of interest 405 

(Saito and Rehmsmeier, 2015). In our case, this corresponds to the ratio between the 406 

PVS volume in the ground truth and the total volume of the region of interest, i.e., the 407 

fractional BG/CSO PVS volumes for each dataset (Table 1).  408 

3.3 Regions of interest 409 

We applied SynthSeg (Billot et al., 2023a) to T2w or T1w images to obtain 410 

parcellations, which we then aggregated to generate masks for the basal ganglia and 411 
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the centrum semiovale region of interest (BG ROI and CSO ROI). The BG ROIs 412 

included the internal and external capsules, caudate, lentiform, and thalamic nuclei, 413 

while the CSO ROI covered the remaining supratentorial white matter. While these 414 

two ROIs do not precisely match anatomical structures, we adhered to the established 415 

nomenclature to maintain consistency with widely used visual rating methods in the 416 

field (Potter et al., 2015). We refined these masks to guarantee the exclusion of the 417 

ventricular atrium, choroid plexus, and posterior horns of the lateral ventricles via atlas 418 

registration (https://doi.org/10.7488/ds/1369). All regions of interest were kept identical 419 

across evaluated methods to ensure that observed differences arose from the 420 

methods themselves rather than from variations in ROI definition. 421 

3.4 Competing methods 422 

We compared DRIPS against four other methods: the Frangi filter (Frangi et al., 1998), 423 

RORPO (Ranking the Orientation Responses of Path Operators) (Merveille et al., 424 

2018, 2014), SHIVA-PVS (Boutinaud et al., 2021b), and nnU-Net (Pham et al., 2024). 425 

Both SHIVA-PVS and nnU-Net were used as pretrained models, tested only in an out-426 

of-sample setting, with no training performed on the cohorts used in this study. 427 

Frangi and RORPO are classical strategies designed for enhancing tubular structures. 428 

Frangi relies on Hessian-based voxel analysis of shape features, while RORPO 429 

applies multi-orientation path opening to distinguish tubular from spherical structures. 430 

We employed a thoroughly validated pipeline developed at the University of Edinburgh 431 

that integrates both methods (more details can be found in (Ballerini et al., 2018; 432 

Bernal et al., 2022; Duarte Coello et al., 2024; Valdés Hernández et al., 2024); the 433 

step-by-step pipeline can be found in https://datashare.ed.ac.uk/handle/10283/8501). 434 

Unlike standard Frangi filter implementations, the pipeline modifies the Gaussian 435 
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filtering step to handle anisotropic voxel sizes. We employed the uint8 conversion step 436 

for RORPO provided in the pipeline and used parameter settings derived from earlier 437 

optimisation studies (Frangi: σmin = 0.4, σmax = 1.2, σstep = 0.2, α = 0.5, β = 0.5, and c 438 

= 500; RORPO: scaleMin=1, nbscales = 9, factor=1.7, dilationSize=1) (Ballerini et al., 439 

2018; Bernal et al., 2022; Duarte Coello et al., 2024). We did not use any other pre- 440 

or post-processing strategies.  441 

SHIVA-PVS is a U-Net-based convolutional neural network designed to segment PVS 442 

on T1w MRI scans. It requires input images of size 160 × 214 × 176, with a 1 × 1 × 1 443 

mm³ isotropic resolution and intensity values normalised to [0,1]. Pre-processing 444 

involved rigid registration of all T1w images to MNI space, cropping to the required 445 

dimensions, and applying min–max normalisation. Following inference, the resulting 446 

segmentations were padded and transformed back to native space using the inverse 447 

rigid registration. The algorithm requires no parameter tuning and is publicly available 448 

on GitHub: https://github.com/pboutinaud/SHIVA_PVS. 449 

nnU-Net is a convolutional neural network that extends the no-new-U-Net (nnU-Net) 450 

(Isensee et al., 2021) for PVS segmentation. Two modality-specific models were 451 

trained, one for T1w and one for T2w images. We refer to the models as nnU-Net 452 

(T1w) and nnU-Net (T2w), respectively. Models requires no manual parameter tuning, 453 

as all pre-processing, processing, and post-processing steps are automated and 454 

implemented in the publicly available codebase: https://github.com/wpham17/nnUNet-455 

Perivascular-Spaces. 456 

3.5 Generalisation to other imaging modalities 457 

Since our aim was to assess the generalisation capabilities of models trained with 458 

DRIPS and the transferability of its learnt features, we also examined whether it could 459 
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extend to imaging modalities beyond MRI. As a proof of concept, we applied it to a 3D 460 

ex-vivo model of the human brain (Amunts et al., 2013). The Human Brain Histology 461 

dataset provides an ultrahigh-resolution 3D model of the human brain reconstructed 462 

from 7404 histological sections. For compatibility with our models and due to hardware 463 

constraints, the data were converted to greyscale and downsampled to 1 mm³ 464 

resolution. Manual PVS segmentation was then performed on five axial slices in the 465 

BG ROI and five axial slices in the CSO ROI by an experienced image analyst using 466 

ITK-Snap with the smallest available drawing tools. 467 

4 Results 468 

4.1 Ablation study 469 

We evaluated the impact of individual DRIPS modules by comparing a model 470 

incorporating them with one that did not. We conducted these assessments on real 471 

data. It should be noted that the real data were not modified in any way.  472 

4.1.1 Effect of voxel size variation in DRIPS on model performance 473 

To assess the effect of resampling and voxel size variation in DRIPS (Section 2.2.1), 474 

we compared the performance of two models: one with fixed and one with variable 475 

voxel sizes. We did this evaluation using data from the EBBIVD cohort (Figure 4). The 476 

use of variable voxel sizes led to a significant (P<0.001) and consistent improvement 477 

in segmentation performance. In the BG, median AUPRC improved from 0.325 478 

[0.210–0.423] to 0.459 [0.358–0.541], DSCvoxel from 0.397 [0.276–0.459] to 0.499 479 

[0.432–0.555], and DSClesion from 0.508 [0.322–0.552] to 0.635 [0.567–0.679]. In the 480 

CSO, median AUPRC rose from 0.256 [0.236–0.338] to 0.363 [0.304–0.439], DSCvoxel 481 
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from 0.323 [0.305–0.386] to 0.423 [0.348–0.463], and DSClesion from 0.435 [0.393–482 

0.506] to 0.532 [0.461–0.570]. 483 

 484 

Figure 4. Allowing variable voxel sizes during image generation yielded better segmentation 485 
performance than using fixed voxel sizes. To illustrate this effect, we evaluated performance on 486 
EBBIVD, a cohort with highly anisotropic voxels (2.2 mm). Fewer PVS were segmented when models 487 
were trained with fixed voxel sizes compared to variable ones (left). With fixed voxel sizes, the model 488 
systematically missed multiple PVS in both normal-appearing white matter and WMH. For clarity, 489 
outputs were truncated to the 0.0–0.10 interval. At the cohort level, Wilcoxon signed-rank tests 490 
confirmed significant differences (P<0.0001) in both AUPRC and DSC across regions of interest (right). 491 
 492 

4.1.2 Effect of motion simulation in DRIPS on model performance 493 

We assessed how simulating motion in DRIPS influenced segmentation performance 494 

(Section 2.2.4), using data from the EBBIVD cohort. We compared the performance 495 

of two models: one incorporating motion simulation during training and one not (Figure 496 

4). Motion simulation enhanced the model’s ability to distinguish true PVS from motion-497 

induced ghosting, as illustrated in case-level examples with and without visible motion. 498 

At the group level, where both motion-affected and unaffected images are present, 499 

performance in the BG was comparable between models: AUPRC 0.469 [0.336–500 

0.545] without vs. 0.459 [0.358–0.541] with motion, DSCvoxel 0.509 [0.406–0.556] vs. 501 

0.499 [0.432–0.555], and DSClesion 0.628 [0.517–0.701] vs. 0.635 [0.567–0.679]. In 502 

0.00 0.10 

Original 
image Fixed size Variable size 
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the CSO, however, the motion-trained model was slightly more conservative voxel-503 

wise, with AUPRC 0.390 [0.299–0.432] vs. 0.363 [0.304–0.439] (P=0.031), but 504 

achieved a higher DSClesion, 0.493 [0.430–0.510] vs. 0.532 [0.461–0.570] (P<0.001). 505 

 506 

Figure 5. Incorporating motion artefacts during image generation results in a more conservative 507 
model with improved ability to separate motion artefacts from PVS. To illustrate this effect, we 508 
evaluated performance on EBBIVD and show probability maps for two cases: one with visible motion 509 
artefacts (left top row) and one without (left bottom row). When trained with motion artefacts, the model 510 
demonstrated improved ability to separate true PVS from motion-induced ghosting. In the motion case, 511 
the best DSCvoxel and DSClesion values without motion augmentation were 0.288 and 0.235, respectively, 512 
whereas training with motion artefacts increased them to 0.334 and 0.258. In cases without visible 513 
motion artefacts, both models yielded comparable results. At the group level, where images with and 514 
without motion artefacts are present, no differences were observed for BG PVS. For CSO PVS, 515 
however, the model trained with motion artefacts tended to be more conservative in detection but, once 516 
optimally thresholded, identified lesions better than the model trained without motion artefacts.  517 
 518 

4.1.3 Effect of Laplacian constraint on model performance 519 

We tested whether applying a Laplacian constraint to restrict detections to hypointense 520 

structures on T1w images and hyperintense structures on T2w images improved 521 

segmentations yielded by DRIPS (Section 2.3.2). We compared the performance of 522 

DRIPS with and without post-processing of its outputs using data from PCB (Figure 523 

6). The Laplacian constraint significantly (P<0.0001) reduced the number of false 524 

positives, leading to overall improvements in PVS segmentation. In the BG ROI, 525 

0.00 0.10 

Original 
image No motion Motion 

W
ith

 m
ot

io
n 

ar
te

fa
ct

s 
W

ith
ou

t m
ot

io
n 

ar
te

fa
ct

s 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2025. ; https://doi.org/10.1101/2025.10.22.25337423doi: medRxiv preprint 

https://doi.org/10.1101/2025.10.22.25337423
http://creativecommons.org/licenses/by-nc/4.0/


27 
 

AUPRC increased from 0.416 [0.307–0.506] to 0.494 [0.409–0.567], DSCvoxel from 526 

0.465 [0.373–0.528] to 0.509 [0.441–0.570], and DSClesion from 0.571 [0.406–0.635] 527 

to 0.590 [0.445–0.667]. In the CSO ROI, AUPRC improved from 0.454 [0.321–0.558] 528 

to 0.515 [0.380–0.611], DSCvoxel from 0.479 [0.397–0.555] to 0.522 [0.424–0.590], and 529 

DSClesion from 0.615 [0.477–0.694] to 0.635 [0.471–0.692]. 530 

 531 

Figure 6. With the Laplacian constraint, only tubular structures matching the expected intensity 532 
profiles are detected. We assessed the effect of the Laplacian constraint on segmentation 533 
performance using the PCB cohort, which consists of T1w images where PVS appear hypointense. 534 
Because DRIPS is contrast-agnostic, it disregards intensity information. As a result, models trained with 535 
DRIPS may identify tubular structures regardless of whether they are hypo- or hyperintense, even 536 
though PVS present with a specific intensity profile. Such cases occurred most frequently within the 537 
internal and external capsules. By retaining regions with positive Laplacian values in T1w and negative 538 
values in T2w images, the Laplacian constraint reduced false positives and improved the quality of PVS 539 
segmentation overall. 540 

4.2 Out-of-sample PVS segmentation 541 

We compared DRIPS against Frangi, RORPO, SHIVA-PVS, and nnU-Net (Table 2). 542 

Below, we focus on two aspects: whether methods generalise out-of-sample and, if 543 

so, how they compare with one another. 544 
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4.2.1 Generalisation 545 

DRIPS generalised across all cohorts, independent of voxel anisotropy or image 546 

modality (T1w/T2w). The other method that ran successfully on all datasets was the 547 

Frangi filter. RORPO was not able to segment any PVS on ADNI. The generalisation 548 

of SHIVA-PVS and the nnU-Net models was limited to their respective training 549 

modalities, with AUPRC values overlapping with or falling below those of a random 550 

classifier when applied to unseen modalities. 551 

4.2.2 Segmentation performance 552 

In cohorts with isotropic T1w imaging (PCB and ADNI), DRIPS and nnU-Net (T1w) 553 

were the top performers. Compared to the third-best method, they showed median 554 

improvements of +0.17–0.39 in AUPRC, +0.09–0.26 in DSCvoxel, and +0.14–0.25 in 555 

DSClesion.  556 

In PCB, DRIPS and nnU-Net (T1w) performed similarly in the BG ROI, with no 557 

significant differences across AUPRC (0.504 [0.406–0.568] vs 0.445 [0.421–0.535], 558 

P=0.644), DSCvoxel (0.512 [0.440–0.570] vs 0.516 [0.483–0.571], P=0.163) or DSClesion 559 

(0.589 [0.442–0.667] vs 0.553 [0.473–0.619], P=0.396). In the CSO ROI, however, 560 

nnU-Net (T1w) achieved significantly higher scores, leaving DRIPS as the second-561 

best performer (AUPRC: 0.515 [0.369–0.608] vs 0.549 [0.450–0.636], P<0.001; 562 

DSCvoxel: 0.521 [0.418–0.587] vs 0.543 [0.484–0.610], P<0.001; DSClesion: 0.630 563 

[0.460–0.690] vs 0.649 [0.581–0.736], P<0.001).  564 

In ADNI, DRIPS significantly outperformed nnU-Net (T1w) in the BG ROI across all 565 

metrics (AUPRC: 0.569 [0.417–0.662] vs 0.474 [0.340–0.535], P=0.003; DSCvoxel: 566 

0.564 [0.460–0.651] vs 0.322 [0.175–0.421], P<0.001; DSClesion: 0.685 [0.571–0.823] 567 

vs 0.517 [0.437–0.588], P<0.001). In the CSO ROI, results were more balanced: 568 
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DRIPS had higher sensitivity, detecting more PVS (DSClesion: 0.680 [0.616–0.720] vs 569 

0.593 [0.534–0.667], P<0.001), while nnU-Net (T1w) provided slightly more precise 570 

delineation (DSCvoxel: 0.636 [0.575–0.657] vs 0.652 [0.563–0.690], P=0.040). 571 

In cohorts with anisotropic T2w imaging (EBBIVD, HIM, and MD-DARS), DRIPS had 572 

the best performance, followed generally by Frangi, RORPO, and the nnU-Net (T2w) 573 

in that order. The performance gap between DRIPS and the second-best method was 574 

most pronounced in the CSO ROI, with median gains of +0.17-0.22 in AUPRC, +0.12-575 

0.14 in DSCvoxel, and +0.06-0.09 in DSClesion. In the BG ROI, the gap was smaller yet 576 

consistent, with AUPRC gains of +0.13-0.17, DSCvoxel gains of +0.07-0.12, and 577 

DSClesion gains of +0.03-0.09.  578 

SHIVA-PVS typically underperformed (AUPRC<0.10; DSC<0.15), with the only 579 

exception in CSO PVS segmentation in ADNI, where it placed third above Frangi. 580 
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Table 2. Out-of-sample PVS segmentation performance across five cohorts. We assessed PVS segmentation in the basal ganglia (BG ROI) and the 581 
centrum semiovale (CSO ROI) using voxel- and lesion-wise Dice similarity coefficients (DSCvoxel and DSClesion) and the area under the precision–recall curve 582 
(AUPRC). We report medians with interquartile ranges, and “NA” where no PVS could be segmented. We identified the best-performing methods across regions 583 
and cohorts using the Wilcoxon signed-rank test and highlighted them in bold. Following the generalisability criterion described in Section 3.2, we marked with 584 
“NG” all AUPRC values that overlapped with or fell below the expected performance of a random classifier. 585 

 Method Metric PCB 
(N=42) 

EBBIVD 
(N=18) 

HIM 
(N=39) 

MD-DARS 
(N=6) 

ADNI 
(N=60) 

B
G

 R
O

I  

Frangi 
AUPRC 
DSCvoxel 
DSClesion 

0.263 [0.213–0.321] 
0.331 [0.292–0.391] 
0.447 [0.390–0.493] 

0.334 [0.272–0.348] 
0.425 [0.379–0.439] 
0.592 [0.524–0.629] 

0.331 [0.269–0.360] 
0.407 [0.372–0.443] 
0.556 [0.516–0.639] 

0.294 [0.253–0.314] 
0.388 [0.345–0.404] 
0.556 [0.529–0.596] 

0.198 [0.101–0.324] 
0.342 [0.247–0.445] 
0.467 [0.323–0.583] 

RORPO 
AUPRC 
DSCvoxel 
DSClesion 

0.203 [0.168–0.287] 
0.303 [0.242–0.374] 
0.252 [0.207–0.326] 

0.324 [0.234–0.351] 
0.417 [0.376–0.453] 
0.424 [0.376–0.541] 

0.308 [0.214–0.361] 
0.415 [0.356–0.451] 
0.432 [0.363–0.493] 

0.264 [0.219–0.336] 
0.381 [0.347–0.421] 
0.421 [0.365–0.450] 

NA 
NA 
NA 

SHIVA-
PVS 

AUPRC 
DSCvoxel 
DSClesion 

0.060 [0.049–0.073] 
0.134 [0.114–0.154] 
0.242 [0.193–0.275] 

0.018 [0.015–0.025] (NG) 
0.040 [0.032–0.048] 
0.039 [0.023–0.094] 

0.013 [0.010–0.018] (NG) 
0.032 [0.028–0.039] 
0.078 [0.039–0.103] 

0.013 [0.011–0.019] (NG) 
0.036 [0.033–0.042] 
0.094 [0.062–0.108] 

0.101 [0.037–0.158] 
0.214 [0.108–0.285] 
0.426 [0.330–0.520] 

nn-Unet 
(T1w) 

AUPRC 
DSCvoxel 
DSClesion 

0.445 [0.421–0.535] 
0.516 [0.483–0.571] 
0.553 [0.473–0.619] 

0.009 [0.006–0.012] (NG) 
0.031 [0.024–0.045] 
0.028 [0.023–0.035] 

0.006 [0.005–0.008] (NG) 
0.021 [0.017–0.032] 
0.032 [0.027–0.041] 

0.007 [0.004–0.008] (NG) 
0.026 [0.018–0.033] 
0.035 [0.025–0.044] 

0.474 [0.340–0.535] 
0.322 [0.175–0.421] 
0.517 [0.437–0.588] 

nn-Unet 
(T2w) 

AUPRC 
DSCvoxel 
DSClesion 

0.009 [0.006–0.011] (NG) 
0.027 [0.022–0.037] 
0.050 [0.042–0.065] 

0.100 [0.057–0.141] 
0.208 [0.121–0.251] 
0.278 [0.184–0.344] 

0.107 [0.082–0.136] 
0.225 [0.173–0.254] 
0.282 [0.217–0.343] 

0.087 [0.078–0.106] 
0.216 [0.180–0.220] 
0.283 [0.202–0.365] 

0.002 [0.001–0.006] (NG) 
0.013 [0.005–0.027] 
0.041 [0.023–0.090] 

DRIPS 
AUPRC 
DSCvoxel 
DSClesion 

0.504 [0.406–0.568] 
0.512 [0.440–0.570] 
0.589 [0.442–0.667] 

0.459 [0.358–0.541] 
0.499 [0.432–0.555] 
0.635 [0.567–0.679] 

0.503 [0.426–0.553] 
0.532 [0.488–0.567] 
0.646 [0.618–0.697] 

0.424 [0.396–0.447] 
0.475 [0.471–0.478] 
0.581 [0.571–0.478] 

0.569 [0.417–0.662] 
0.564 [0.460–0.651] 
0.685 [0.571–0.823] 

C
SO

 R
O

I 

Frangi 
AUPRC 
DSCvoxel 
DSClesion 

0.170 [0.119–0.276] 
0.311 [0.249–0.409] 
0.429 [0.333–0.546] 

0.185 [0.129–0.253] 
0.286 [0.249–0.341] 
0.472 [0.383–0.515] 

0.192 [0.156–0.250] 
0.314 [0.268–0.340] 
0.451 [0.394–0.514] 

0.150 [0.121–0.180] 
0.260 [0.238–0.289] 
0.391 [0.340–0.440] 

0.272 [0.157–0.362] 
0.381 [0.269–0.447] 
0.426 [0.362–0.509] 

RORPO 
AUPRC 
DSCvoxel 
DSClesion 

0.181 [0.103–0.309] 
0.311 [0.219–0.429] 
0.376 [0.252–0.484] 

0.196 [0.119–0.244] 
0.301 [0.220–0.354] 
0.344 [0.267–0.408] 

0.181 [0.127–0.263] 
0.290 [0.227–0.360] 
0.309 [0.264–0.388] 

0.148 [0.112–0.179] 
0.253 [0.208–0.287] 
0.298 [0.217–0.325] 

NA 
NA 
NA 

SHIVA-
PVS 

AUPRC 
DSCvoxel 
DSClesion 

0.011 [0.005–0.022] 
0.035 [0.019–0.056] 
0.063 [0.038–0.110] 

0.026 [0.018–0.032] (NG) 
0.049 [0.035–0.060] 
0.014 [0.001, 0.031] 

0.013 [0.010–0.018] (NG) 
0.039 [0.029–0.049] 
0.014 [0.005, 0.023] 

0.019 [0.013–0.020] (NG) 
0.038 [0.025–0.042] 
0.010 [0.005–0.018] 

0.421 [0.319–0.481] 
0.469 [0.417–0.521] 
0.564 [0.487–0.652] 

nn-Unet 
(T1w) 

AUPRC 
DSCvoxel 
DSClesion 

0.549 [0.450–0.636] 
0.543 [0.484–0.610] 
0.649 [0.581–0.736] 

0.013 [0.008–0.016] (NG) 
0.047 [0.029–0.059] 
0.010 [0.009, 0.014] 

0.010 [0.007–0.012] (NG) 
0.037 [0.028–0.047] 
0.010 [0.008–0.015] 

0.009 [0.007–0.011] (NG) 
0.037 [0.025–0.040] 
0.013 [0.007–0.015] 

0.632 [0.564–0.697] 
0.652 [0.563–0.690] 
0.593 [0.534–0.667] 

nn-Unet 
(T2w) 

AUPRC 
DSCvoxel 
DSClesion 

0.003 [0.017–0.005] (NG) 
0.007 [0.005–0.012] 
0.014 [0.010–0.019] 

0.140 [0.106–0.177] 
0.216 [0.181–0.246] 
0.296 [0.263–0.327] 

0.160 [0.124–0.206] 
0.256 [0.210–0.302] 
0.348 [0.293–0.399] 

0.116 [0.105–0.136] 
0.209 [0.200–0.224] 
0.284 [0.232–0.330] 

0.007 [0.004–0.010] (NG) 
0.019 [0.013–0.029] 
0.046 [0.028–0.059] 

DRIPS 
AUPRC 
DSCvoxel 
DSClesion 

0.515 [0.369–0.608] 
0.521 [0.418–0.587] 
0.630 [0.460–0.690] 

0.363 [0.304–0.439] 
0.423 [0.348–0.463] 
0.532 [0.461–0.570] 

0.409 [0.336–0.464] 
0.452 [0.399–0.482] 
0.545 [0.498–0.616] 

0.323 [0.286–0.358] 
0.387 [0.352–0.412] 
0.467 [0.402–0.521] 

0.665 [0.569–0.698] 
0.636 [0.575–0.657] 
0.680 [0.616–0.720] 

586 
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4.2.3 WMH and PVS segmentation 587 

WMH can impair accurate PVS segmentation. To assess this effect, we examined the 588 

relationship between WMH volume and AUPRC using Spearman correlations (Figure 589 

7). For this secondary analysis, we used data from ADNI, HIM, and MD-DARS (N = 590 

105), all of which had WMH segmentations. We combined HIM and MD-DARS due to 591 

the small sample size of MD-DARS, which could otherwise lead to spurious 592 

correlations. The analysis focused on models that successfully generalised. 593 

In the BG ROI, AUPRC values obtained by the Frangi filter in both T1w and T2w 594 

imaging, by RORPO in T2w imaging, and by SHIVA-PVS in T1w imaging increased 595 

with greater WMH volume (P ≤ 0.01). The underlying reasons differed between 596 

SHIVA-PVS and the Frangi filter or RORPO. SHIVA-PVS performed better in cases 597 

with more visible BG PVS (Figure 8), which occurred more frequently in patients with 598 

greater WMH burden (Spearman correlation between BG PVS volume and BG WMH 599 

volume in ADNI: ρ = 0.396, P = 0.002). Both the Frangi filter and RORPO produced 600 

non-zero responses within WMH. In patients with higher BG WMH burden, many WMH 601 

voxels were adjacent or around to true PVS, causing false detections to overlap with 602 

true positives and artificially inflating recall rates and AUPRC (Figure 8). Unlike Frangi, 603 

RORPO, and SHIVA-PVS, AUPRC of the nnU-Net models (T1w and T2w) and DRIPS 604 

in the BG ROI did not relate to BG WMH volumes (P > 0.10). 605 

In the CSO ROI, AUPRC values of the Frangi filter in both T1w and T2w imaging, as 606 

well as that of the nnU-Net (T2w) in T2w imaging, declined with increasing WMH 607 

volume in the same region (P < 0.05). The reasons behind these associations differed 608 

between methods. The Frangi filter generally marked WMH as potential PVS. As a 609 

result, higher WMH burden produced more false positives and consequently lower 610 
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AUPRC values (Figure 8). In contrast, the nnU-Net (T2w) more effectively disregarded 611 

WMH as potential PVS candidates, but this same ability also led to the omission of 612 

PVS located within WMH regions (Figure 8). The AUPRC values obtained by RORPO, 613 

SHIVA-PVS, nnU-Net (T1w), and DRIPS in the CSO ROI were not associated with 614 

CSO WMH volumes (P > 0.05). 615 

 616 

Figure 7. Relationship between segmentation performance (AUPRC) and regional WMH volume 617 
for each algorithm across the ADNI and HIM and MD-DARS. We studied these relationships using 618 
Spearman correlation coefficients (shown above each subplot). Algorithms that failed or showed limited 619 
generalisation within specific datasets were excluded from this secondary analysis (ADNI: RORPO, 620 
nnU-Net (T2w); HIM+MD-DARS: SHIVA-PVS, nnU-Net (T1w)). We used the Greek letter ρ to denote 621 
the Spearman correlation coefficient and P to denote its p-value. 622 
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 623 

Figure 8. Response map yielded by PVS segmentation methods on T2w and T1 imaging. (A) 624 
Maps obtained from all methods that generalised to T2w imaging. The Frangi filter and RORPO 625 
produced non-zero responses within WMH. In patients with higher BG WMH burden, false detections 626 
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Low High 
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near true PVS often overlapped spatially, artificially inflating AUPRC (white and green arrows). On the 627 
other hand, the nnU-Net (T2w) tended to miss PVS located within WMH (green arrow). (B) Maps 628 
obtained from all methods that generalised to T1w imaging. SHIVA-PVS identified salient as opposed 629 
to subtle PVS (yellow vs blue arrows). 630 

4.3 Generalisation to other imaging modalities 631 

We evaluated the generalisation capacity of DRIPS and the four competing methods 632 

beyond MRI, with particular emphasis on their transferability to a 3D ex vivo brain 633 

model reconstructed from histology (Figure 9). Histology-to-MNI registration was 634 

unsuccessful with SynthMorph and ANTs, preventing SHIVA-PVS from being 635 

evaluated. DRIPS achieved the best performance across both BG and CSO ROIs. In 636 

the BG, it reached a DSClesion of 0.477, DSCvoxel of 0.482, and AUPRC of 0.512, clearly 637 

outperforming all other methods (next best DSClesion 0.373 with RORPO, DSCvoxel 638 

0.260 with Frangi, and AUPRC 0.205 with RORPO). In the CSO, it again obtained the 639 

highest scores with DSClesion 0.629, DSCvoxel 0.592, and AUPRC 0.625, surpassing 640 

RORPO (0.607/0.466/0.475), nnU-Net (T1w; 0.542/0.517/0.450), and Frangi 641 

(0.564/0.492/0.493). nnU-Net (T2w) did not generate meaningful PVS segmentations. 642 

 643 
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 644 

Figure 9. PVS segmentation on a 3D ex-vivo brain model reconstructed from histology images. 645 
(A) Segmentation performance, as measured by AUPRC and Dice at both voxel and lesion level. 646 
Registration of histology images to MNI space was unsuccessful with SynthMorph and ANTs, 647 
preventing SHIVA-PVS evaluation. The nnU-Net (T2w) could not segment PVS successfully. The 648 
classical methods, Frangi and RORPO, successfully segmented PVS as expected due to their modality-649 
agnostic design. Both nnU-Net (T1w) and DRIPS produced valid segmentations. DRIPS outperformed 650 
all other methods across both regions of interest. RORPO and Frangi achieved the next best results, 651 
while nnU-Net (T1w) had the lowest performance. (B) Example segmentations in the CSO and BG ROIs 652 
of histology sections. Across algorithms, thresholds were chosen to yield the highest voxel-level Dice 653 
coefficients. Segmentation in the CSO ROI was successful across methods, whereas performance in 654 
the BG ROI was impaired by systematic errors, including misclassification of the claustrum as PVS 655 
(white arrow) and spurious segmentation of multiple thalamic structures as PVS (yellow arrow). 656 
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5 Discussion 657 

In recent years, deep learning has become the dominant paradigm for PVS 658 

segmentation (Waymont et al., 2024) and for medical image analysis more broadly, 659 

primarily owing to its strong within-dataset performance. Yet, as also illustrated by our 660 

findings, such models often struggle to generalise when faced with data distributions 661 

or imaging modalities not represented during training. Unlike classical approaches—662 

which may be less accurate in noisy settings but still provide a usable output—deep 663 

learning models can fail outright when applied outside their training domain, producing 664 

no meaningful segmentation. However, relying on constant manual labelling and fine-665 

tuning for every new dataset is neither scalable nor sustainable. 666 

Against this backdrop, our aim was not to develop a model narrowly optimised for a 667 

single dataset, but to propose a new PVS segmentation method that achieves high 668 

accuracy and robust generalisation across imaging sequences and cohorts. By 669 

leveraging physics-based image generation and domain randomisation, we 670 

demonstrated that it is possible to mitigate domain shifts and achieve accurate PVS 671 

segmentation under conditions seen during training. Across five independent cohorts, 672 

we show that DRIPS can (i) segment PVS on both isotropic and anisotropic T1- and 673 

T2w images, (ii) outperform classical and machine learning–based approaches, (iii) 674 

segment PVS independently of the overall WMH burden, and (iv) generalise even to 675 

other modalities, including histology. Taken together, these results position DRIPS as 676 

a robust and versatile framework for PVS segmentation. 677 
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5.1 Physics-inspired domain randomisation 678 

DRIPS brings together two complementary research directions: domain randomisation 679 

and physics-inspired data augmentation. Domain randomisation tackles the challenge 680 

of generalisation by exposing models to synthetic data generated from segmentations 681 

with fully randomised parameters (Tobin et al., 2017), enabling the learning of robust 682 

and transferable features provided that the synthetic variability adequately reflects 683 

real-world conditions (Billot et al., 2023a). Physics-inspired data augmentation builds 684 

on this by modelling the image acquisition process and its artefacts, thereby enhancing 685 

realism and surpassing purely agnostic randomisation strategies (Adams et al., 2024). 686 

We observed that introducing voxel size variability through resampling and simulating 687 

motion artefacts both contributed positively to performance. Resampling proved 688 

essential for handling anisotropic scans. Overall, DRIPS achieved consistent 689 

improvements of approximately 0.10–0.13 across all evaluation metrics, with slightly 690 

greater gains in the BG compared to the CSO, when resampling was considered as 691 

opposed to when it was not. Simulating motion artefacts also helped models trained 692 

with DRIPS distinguish true PVS from motion-related ghosting, as seen in case-level 693 

examples. At the group level, performance in the BG was largely unaffected by motion 694 

training, whereas in the CSO it led to slightly lower voxel-wise precision–recall but 695 

significantly improved lesion-wise detection, suggesting a more conservative yet 696 

accurate segmentation strategy. 697 

5.2 DRIPS segments PVS accurately on real MRI data 698 

Conventional deep learning approaches to PVS segmentation have typically 699 

depended on small, carefully curated training datasets. While such models can 700 

achieve high accuracy within their training domain, they often fail to generalise well to 701 
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new datasets. SHIVA-PVS, a 3D U-Net trained solely on T1w images, exemplifies this 702 

limitation: it did not transfer to T2w scans and showed only limited sensitivity to PVS 703 

even within its training modality. A similar limitation was seen with the nnU-Net 704 

framework, where models trained on T1w images could only process T1w data, and 705 

likewise for T2w images, with little to no generalisation across modalities. Clearly, 706 

training separate models for each input modality offers a practical workaround, but it 707 

bypasses rather than addresses the fundamental issue of generalisability. 708 

In contrast, our results highlight the utility of domain randomisation for bridging the 709 

generalisation gap. DRIPS had stable performance across both T1- and T2w images 710 

without the need for retraining, and importantly, the learned features also transferred 711 

to histological data—a modality entirely distinct from MRI. These findings reinforce the 712 

central premise of domain randomisation: that exposure to sufficiently diverse 713 

synthetic variation enables models to acquire representations that remain applicable 714 

beyond their original training domain. 715 

5.3 DRIPS versus competing approaches 716 

We compared DRIPS to both classical image-processing-based and machine 717 

learning–based methods, using scans and manual annotations from five cohorts (n = 718 

165) that included healthy controls as well as individuals with Long-COVID, 719 

hypertensive arteriopathy, cerebral amyloid angiopathy, heart failure, mild cognitive 720 

impairment, and Alzheimer’s disease. DRIPS outperformed all competing methods on 721 

anisotropic scans (EBBIVD, HIM, and MD-DARS) and ranked among the top two on 722 

isotropic scans (PCB and ADNI).  723 

On anisotropic T2w scans, the conventional Frangi filter generally emerged as the 724 

second-best method. This finding carries important implications for prior studies: when 725 
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carefully tuned, Frangi can achieve accurate PVS segmentation, outperforming all 726 

machine learning–based methods aside from DRIPS. Its main drawback, as with any 727 

other classical PVS segmentation strategy, is the need for manual calibration on each 728 

new dataset to reach optimal performance. 729 

On isotropic T1w scans, nnU-Net and DRIPS achieved the highest overall 730 

performance, surpassing all other methods by median margins of at least 0.17 in 731 

AUPRC, 0.09 in DSCvoxel, and 0.14 in DSClesion. The marked improvement in precision 732 

and recall over classical image-processing methods likely stems from the fact that, as 733 

shown in Figure 8 and Figure 9, regions such as the boundaries of the putamen, 734 

pallidum, and claustrum are often misidentified as PVS by these methods solely due 735 

to their “tubular” appearance. Note that, in general, signal intensity differences 736 

between the basal ganglia and the surrounding white matter on T1w imaging—737 

particularly at higher field strengths—can also be erroneously highlighted as PVS. In 738 

these situations, post-processing strategies that analyse jointly location, length and 739 

shape become essential. Their impact on the segmentation performance of classical 740 

techniques was not evaluated in this study, as it lay outside the primary scope of our 741 

work. 742 

5.4 Robustness against WMH 743 

Previous studies have shown that the presence of WMH can substantially compromise 744 

the performance of PVS segmentation methods (Bernal et al., 2022; Pham et al., 2022; 745 

Valdes Hernandez et al., 2013; Waymont et al., 2024). Our findings align with this 746 

evidence, revealing that both classical and deep learning approaches are often 747 

dependent on the regional WMH burden. Traditionally, one of the most common ways 748 

to mitigate this issue has been to exclude WMH from analyses. However, as illustrated 749 
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by the nnU-Net (T2w), this approach introduces its own bias: by excluding WMH, the 750 

method inherently omits PVS that overlap with them, creating artificial correlations with 751 

WMH volume, since individuals with more WMH also tend to have more PVS within 752 

them.  753 

Both extremes—erroneously labelling WMH as PVS or excluding WMH entirely—are 754 

suboptimal. The goal should instead be to develop models whose performance is 755 

independent of WMH burden. In this regard, our results indicate that DRIPS was able 756 

to segment PVS comparably accurately even in cases with high WMH volumes, 757 

without its performance being significantly compromised or biased, regardless of 758 

whether input data were T1w or T2w images. A similar pattern was observed for the 759 

nnU-Net (T1w) in T1w imaging. Although these findings are based on a limited sample 760 

(60 T1w and 45 T2w images), they represent a promising step towards developing 761 

segmentation methods that are more robust and less biased by co-occurring brain 762 

lesions. 763 

5.5 Limitations and future work 764 

Despite the demonstrated generalisability of our approach, four limitations merit 765 

consideration. First, we modelled PVS as tortuous tubular structures distributed 766 

throughout the brain. While effective for training and segmentation, this abstraction 767 

oversimplifies their biology. In vivo, PVS are closely aligned with the cerebral 768 

vasculature, following the trajectories of arterioles, capillaries, and venules, with their 769 

orientation, calibre, and spatial density shaped by vascular anatomy, regional blood 770 

supply, and vessel tortuosity. Second, we assumed a predominant orientation towards 771 

the lateral ventricles. This is a reasonable approximation for PVS in the centrum 772 

semiovale, which often follow medullary arteries radiating to the ventricles, but it does 773 
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not hold in other regions—for instance, PVS surrounding the lenticulostriate arteries 774 

in the basal ganglia, which typically run perpendicular to the axial plane. Looking 775 

ahead, these limitations highlight an opportunity: conditioning PVS generation on 776 

vascular maps could produce more physiologically plausible simulations, improving 777 

anatomical fidelity and reducing false positives in regions where tubular structures 778 

occur independently of vessels. Third, in this work, we implemented the segmentation 779 

network in DRIPS as a 3D U-Net and did not investigate alternative, more advanced 780 

architectures. While this represents a limitation, it was not the primary focus of our 781 

study. Our main objective was to demonstrate that DRIPS can achieve accurate and 782 

robust PVS segmentation across multiple cohorts, health conditions, and imaging 783 

settings, rather than to develop a new method optimised for peak performance. 784 

Exploring whether more sophisticated segmentations models—such as nnU-Net or 785 

transformers—can further improve performance represents an important direction for 786 

future work. Fourth, although our evaluation included data from multiple individuals 787 

across five cohorts spanning a wide range of conditions—from normal cognition to 788 

post-COVID syndrome, hypertensive arteriopathy, cerebral amyloid angiopathy, heart 789 

failure, mild cognitive impairment, and Alzheimer’s disease—our assessment remains 790 

limited by the imaging protocols included in this study. As part of our future work, we 791 

plan to include patients spanning a broader range of disease severities—from very 792 

mild to advanced—scanned using multiple imaging sequences, and to conduct 793 

longitudinal assessments to evaluate the method’s ability to track changes in PVS over 794 

extended periods of time. 795 
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6 Conclusion 796 

We introduced DRIPS, the first physics-inspired domain randomisation framework for 797 

accurate out-of-sample PVS segmentation. DRIPS accurately segmented PVS in both 798 

T1w and T2w images, at isotropic and anisotropic resolutions, without requiring 799 

manual PVS segmentations, retraining, or fine-tuning. It outperformed all competing 800 

methods on anisotropic images and achieved performance comparable to nnU-Net on 801 

isotropic data. Unlike the segmentation performance of competing methods, its 802 

performance was not associated by the volume of WMH in the brain. DRIPS’s out-of-803 

sample capabilities extended beyond MRI, successfully segmenting PVS in 3D ex vivo 804 

brain models reconstructed from histology. Collectively, our findings demonstrate that 805 

DRIPS segments PVS accurately across diverse imaging settings and patient 806 

populations, enabling more accessible and reliable automated PVS quantification for 807 

both research and clinical use. 808 
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