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Abbreviations

AUPRC Area under the precision-recall curve

BG ROI Basal ganglia region of interest

CSF Cerebrospinal fluid

CSO ROl  Centrum semiovale region of interest

DSC Dice similarity coefficient

DRIPS Domain Randomisation for Image-based PVS Segmentation
FFT Fast Fourier transformation

IFFT Inverse Fast Fourier transformation

MRI Magnetic resonance imaging

PVS Perivascular spaces

ROC Receiver operating characteristic curve

ROI Region of interest

RORPO Ranking the orientation responses of path operators
SNR Signal-to-noise ratio

SVF Stationary velocity field

TE Echo time

TR Repetition time

WMH White matter hyperintensities
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79 Abstract

80 Perivascular spaces (PVS) are emerging as sensitive imaging markers of brain health.
81  Yet, accurate out-of-sample PVS segmentation remains challenging since existing
82 methods are modality-specific, require dataset-specific tuning, or rely on manual labels
83 for (re-)training. We propose DRIPS (Domain Randomisation for Image-based PVS
84  Segmentation), a physics-inspired framework that integrates anatomical and shape
85 priors with a physics-based image generation process to produce synthetic brain
86 images and labels for on-the-fly deep learning model training. By introducing variability
87  through resampling, geometric and intensity transformations, and simulated artefacts,
88 it generalises well to real-world data. We evaluated DRIPS on MRI data from five
89 cohorts spanning diverse health conditions (N = 165; T1w and T2w, isotropic and
90 anisotropic imaging) and on a 3D ex vivo brain model reconstructed from histology.
91 We evaluated its performance using the area under the precision-recall curve
92 (AUPRC) and Dice similarity coefficient (DSC) against manual segmentations and
93 compared it with classical and deep learning methods, including Frangi, RORPO,
94  SHIVA-PVS, and nnU-Net. Only DRIPS and Frangi achieved AUPRC values above
95 chance across all cohorts and the ex vivo model. On isotropic data, DRIPS and nnU-
96 Net performed comparably, outperforming the next-best method by a median of
97 +0.17-0.39 AUPRC and +0.09-0.26 DSC. On anisotropic data, DRIPS outperformed
98 all competitors by a median of +0.13—0.22 AUPRC and +0.07-0.14 DSC. Importantly,
99 its performance was not associated with white matter hyperintensity burden. DRIPS
100 delivers accurate, fully automated PVS segmentation across heterogeneous imaging
101  settings, reducing the need for manual labels, modality-specific models, or cohort-

102  dependent tuning.
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105 1 Introduction

106  Perivascular spaces (PVS) are anatomical passageways that surround arterioles,
107 capillaries, and venules in the brain and an integral part of the neurovascular unit
108 (Gouveia-Freitas and Bastos-Leite, 2021; Wardlaw et al., 2020). Collectively, PVS
109 form a brain-wide network of conduits for cerebrospinal fluid (CSF) circulation
110  (Hirschler et al., 2025; Wardlaw et al., 2020, 2009; Yamamoto et al., 2024), a function
111 that underlies the clearance of metabolic and neurotoxic waste products (Braun and
112 lliff, 2020; Hablitz and Nedergaard, 2021; lliff et al., 2014, 2012; Mestre et al., 2018;
113 Rasmussen et al., 2018; Wardlaw et al., 2020). These spaces are dynamic, with the
114  capacity to shrink and enlarge, at times reaching a calibre that renders them visible in
115  vivo on magnetic resonance imaging (MRI) at standard clinical field strengths (1.5 T /
116 3 T) (Kern et al., 2023; Kim et al., 2023; Lynch et al., 2023; Menze et al., 2024; Vikner
117 etal., 2022). PVS enlargement is pathological (Bown et al., 2022; Francis et al., 2019;
118 Okar et al., 2023; Wardlaw et al., 2020) and is considered an early structural change
119  of impaired cerebrovascular and brain waste clearance function (Francis et al., 2019;
120 Ineichen et al., 2022; Okar et al., 2023; Schreiber et al., 2023; Wardlaw et al., 2020;

121 Waymont et al., 2024).

122  The growing recognition of PVS as a non-invasive imaging marker of compromised
123  brain health function has prompted the development and large-scale deployment of
124  computational methods for their quantification and monitoring (Smith et al., 2019;
125 Waymont et al., 2024). Broadly, the literature describes two strategies: classical and
126  machine learning based methods (Waymont et al., 2024). Classical methods use the
127  morphology and CSF-like signal of PVS to distinguish them from other brain structures
128 and, when multimodal data are available, from other concomitant lesions, such as

6
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129  white matter hyperintensities (WMH) and lacunar infarcts (Ballerini et al., 2020, 2018;
130 Barisano et al., 2025; Barnes et al., 2022; Bernal et al., 2021b, 2020; Boespflug et al.,
131  2018; Duarte Coello et al., 2024; Menze et al., 2024; Schwartz et al., 2019; Valdés
132 Hernandez et al., 2024). These well-established methods offer high sensitivity (Bernal
133 etal., 2022)—a double-edged sword that often necessitates careful parameter tuning
134 and post-processing to minimise false positives (Ballerini et al., 2018; Bernal et al.,
135 2022, 2020; Valdés Hernandez et al., 2024). Machine learning methods, on the other
136 hand, leverage supervised learning (Boutinaud et al., 2021a; Cai et al., 2024; Chai et
137  al., 2025; Dubost et al., 2019a, 2019b; Gonzalez-Castro et al., 2016; Hou et al., 2017;
138 Lian et al., 2018; Park et al., 2016; Pham et al., 2024; Rashid et al., 2023; Zhang et
139 al,, 2017). Within this category, deep learning has emerged as the most widely
140 adopted method (Waymont et al., 2024). The main advantage of deep learning is that,
141  with sufficiently large, diverse, and well-annotated datasets, models are able to
142  overcome some of the limitations of classical strategies. Nonetheless, the scarcity of
143 such datasets (Sudre et al., 2024) generally hinders their ability to generalise

144  effectively to unseen datasets (Billot et al., 2023a; Chalcroft et al., 2025). This, in turn,

145  constrains their broader applicability beyond their training sets.

146 Domain randomisation has emerged as an alternative to address this generalisation
147  problem (Tobin et al.,, 2017). In contrast to data augmentation—which applies
148 predefined spatial and intensity transformations to existing images—domain
149 randomisation uses procedural image generation models, conditioned on
150 segmentations with fully randomised parameters, to create synthetic datasets for
151 training deep learning models. The diversity of training samples enables models
152 trained with domain randomisation to learn domain-independent features that

153 characterise target structures well. SynthSeg is an example of a successful method


https://doi.org/10.1101/2025.10.22.25337423
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.10.22.25337423; this version posted October 30, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
itis made available under a4 CO-BY-NC 4.0 International license .
154  taking advantage of domain randomisation (Billot et al., 2023a). It is a model that
155 segments brain structures on real MRI acquired with diverse sequences and
156  modalities without retraining, despite being trained exclusively on synthetic data. Since
157 itsintroduction in the early 2020s, approaches leveraging domain randomisation have
158 been successfully applied to a variety of tasks, including skull-stripping (Hoopes et al.,
159  2022), segmentation of brain structures (Billot et al., 2023a, 2023b), WMH (Laso et

160 al., 2023), and stroke lesions (Chalcroft et al., 2025), as well as super-resolution

161  (Iglesias et al., 2023) and image registration (Hoffmann et al., 2024).

162 Realism in synthetic data generation is not essential; rather, it is crucial that generated
163 data pose challenges comparable to real-world scenarios, enabling networks to learn
164 robust and transferable features (Billot et al., 2023a). For synthetic PVS data
165 generation, Bernal et al. (2022b) developed an open-source physics-inspired
166  computational model that creates 3D digital reference objects containing PVS-like
167  structures distributed throughout the brain. The generation process involved inserting
168 randomly oriented tubular structures into a high-resolution head model, followed by k-
169 space sampling, motion artefact simulation, and Rician noise corruption to produce
170 low-resolution T2w-like images. Although it was originally conceived for method
171 benchmarking, this computational model may serve as a basis for data generation
172 and, when combined with domain randomisation, may facilitate training of deep

173  learning algorithms with improved generalisability (Bernal et al., 2022).

174 Here, we introduce DRIPS (Domain Randomisation for Image-based PVS
175  Segmentation), the first physics-inspired domain randomisation framework specifically
176 developed for accurate out-of-sample PVS segmentation. DRIPS accurately
177 segmented PVS in imaging data acquired with multiple imaging sequences and
178 resolutions from patients with varying health conditions. It performed robustly across
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all these settings and frequently surpassed both classical image-processing and deep

learning methods.

2 DRIPS

DRIPS is a domain randomisation framework specifically designed for out-of-sample
PVS segmentation (Figure 1). It integrates anatomical and shape priors of the human
head and PVS with a physics-inspired procedural image generation process to create
synthetic brain images and corresponding label maps. It then uses these synthetic
datasets, generated on the fly, to train segmentation networks. By introducing
variability through random resampling, geometric transformations, intensity sampling,
and simulated MR artefacts, DRIPS produces models that achieve high segmentation
accuracy and generalise effectively to real-world data. The following sections provide

detailed descriptions of each step.
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(A) DRIPS

Synthetic
Reference head models image

Segmentation
network

Procedural
image generator

Ground truth

Reference model

Original label map Resampling Non-linear deformation PVS generation

Synthetic image generation

Affine transformation Random intensities Motion artefacts Rician noise Bias field

l

Outputs

Synthetic image Ground truth

Figure 1. Schematic of DRIPS. (A) DRIPS is a domain randomisation framework that trains
segmentation networks for out-of-sample PVS segmentation. It combines anatomical and shape priors
of the human head and PVS with physics-inspired image generation to create synthetic brain images
and corresponding label maps containing PVS-like structures. It then trains segmentation networks—
here exemplified with a U-Net—on these synthetic image—label pairs. By exposing networks to broad
imaging variability during training, DRIPS achieves accurate PVS segmentation across diverse cohorts,
modalities, and acquisition settings. (B) Starting from anatomical head atlases with added synthetic,
tortuous PVS-like structures, DRIPS procedurally generates heterogeneous synthetic brain images
through random resampling, non-linear and affine transformations, intensity sampling, and typical MR
image corruptions and artefacts (motion artefacts, Rician noise, bias fields). Red-circled regions in the
procedural image generator correspond to zoomed-in views.
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203 2.1 Reference model

204 2.1.1 Head model

205 We used 840 three-dimensional atlases derived from T1w and FLAIR scans of the
206 ADNI database and CSVD Magdeburg cohorts as head models. Each atlas was a
207 segmentation map with 1 mm? resolution, in which every voxel was assigned to a
208 specific class, including the lateral ventricles, white matter, WMH, cortical grey matter,
209 cerebral white matter, cerebellar grey matter, brain stem, subcortical structures, or
210 extracranial structures (Billot et al., 2023a). We used SynthSeg (Billot et al., 2023a)
211 and LST-Al (Wiltgen et al., 2024) to obtain whole-brain parcellations and WMH masks,
212  respectively. To introduce further anatomical variability, we applied random nonlinear
213  diffeomorphic deformations to the original set of atlases. Specifically, we sampled a
214  small stationary velocity field (SVF; 10 x 10 x 10 x 3) from a zero-mean Gaussian
215  distribution, with standard deviation g, randomly drawn from a uniform distribution.
216  The range of a5, Was set from 0 to 4 to allow for varying degrees of deformation. We
217  then upsampled this field to full image resolution using trilinear interpolation to obtain
218  a high-resolution SVF. Finally, we warped the original label map with this deformation

219 field using nearest-neighbour interpolation to produce deformed brain atlases.

220 2.1.2 PVS model

221  We then added synthetic PVS-like structures to the generated head models. Although
222  PVS are commonly described as tubular in clinical studies (Wardlaw et al., 2020), they
223 do not conform to strictly Euclidean shapes and often exhibit tortuous geometries

224  (Bernal et al., 2022). To capture this non-Euclidean morphology and have flexibility in

11
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225 representing PVS-like structures, we modelled them as tortuous tubular structures

226  using the following parametric equation:
227 x(t) = 0,y(t) = cos(at),z(t) = t,

228 where t ~ U(tiow, thign) @nd a ~ U(aiow, @nign) control the length and tortuosity of
229 the generated PVS. Longer and more tortuous PVS structures are obtained by
230 increasing t and decreasing a. We allowed t to vary between 2 and 10 voxels and «
231  between 1/10 to 1/5. We placed these synthetic PVS in random locations within the
232 white matter (normal-appearing and hyperintensities) and subcortical grey matter
233 regions. We aligned each PVS towards the lateral ventricles, and to prevent clustering

234 near the brain’s centre, we used a stratified jittered sampling strategy.

235 2.2 Procedural synthetic image generation

236 We developed a procedural image generation model to create synthetic images for
237 training the segmentation network. Using the head and PVS models, we generated
238 synthetic images on the fly with fully randomised parameters, varying image
239 intensities, contrasts, resolutions, and artefacts within each batch. The individual steps

240 for synthetic data generation are illustrated in Figure 1 and described in detail below:

241 2.2.1 Resampling and voxel size variability

242  To enable the model to process scans acquired at different voxel sizes, we generated
243 synthetic images and label maps with varying voxel sizes. We achieved this by
244  resampling the input label maps to a randomly selected target voxel size. The target
245 voxel size was randomly chosen on-the-fly during training, with each dimension

246  varying between 0.5 mm and 4 mm to enable the processing of both research and

12
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247 clinical scans. We resampled label maps using nearest-neighbour interpolation to

248 preserve the original discrete voxel values.

249 2.2.2 Affine transformations

250 We applied random affine transformations to the label maps to increase anatomical
251 variability and, at the same time, to preserve structural integrity. Rotation, scaling,
252 shearing, and translation parameters were randomly selected, with all values sampled

253  from uniform distributions (see (Billot et al., 2023a) for more information).

254 2.2.3 Random intensity generation

255 We assigned each anatomical structure a single random intensity, sampled from a
256 standard uniform distribution U(0,1). This procedure varied structure intensities
257 across images, eliminating consistent local patterns and forcing the model to rely on

258 shape and spatial information for segmentation.

259 2.2.4 Motion artifacts

260 Motion artefacts are a common source of image degradation in MRI and can markedly
261 affect the visibility and quantification of fine structures such as PVS (Bernal et al.,
262 2022). Owing to their thin, elongated morphology, PVS are particularly susceptible to
263 being mistaken for motion streaks, making artefact mitigation especially critical for this
264 application. We simulated rotational motion during k-space acquisition using a
265 composite k-space model (Bernal et al.,, 2022, 2021a; Shaw et al., 2020).
266  We first rotated the original synthetic volume twice by random angles within [-15°, 15°]
267 around random axes and compute the k-space of both the original and rotated
268 volumes. We then generated a composite k-space by taking between 50% and 100%

269 of the data from the original volume and replacing the remainder with data from the
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270 rotated volumes along a randomly selected axis. Finally, we transformed the resulting
271 composite k-space to image space to produce a motion-corrupted image. The level of
272  displacement between consecutive frames and the time at which the motion occurs
273 determines the severity and appearance of the motion artefacts in the resulting image

274  (Figure 2).

Rotated
volumes k space Masks

Input volume Combined k space

Output volume

275

276  Figure 2. Simulation of motion artefacts in DRIPS. Motion was modelled in k-space by combining
277  data from the original and randomly rotated volumes along a chosen axis. Varying the fraction of k-
278  space segments taken from the original and rotated versions and the "timing” of motion yielded different
279  levels of blurring and ghosting. Abbreviation: IFFT/FFT: (inverse) fast Fourier transformation

280 2.2.5 Rician noise

281 MRI data are inherently affected by noise originating during acquisition in k-space,
282 where additive white Gaussian noise affects both the real and imaginary components
283 of the complex signal (Gudbjartsson and Patz, 1995). Following transformation into
284  the spatial domain and magnitude reconstruction, this noise takes a Rician distribution.
285 To add Rician-distribution noise to the images, we added uncorrelated additive white
286 Gaussian noise to the real and imaginary channels of the combined k space. The

287  Gaussian noise standard deviation was computed as g,,5;5e = Usignai/105VF48/20, with

14
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288 the SNR in decibels sampled from a uniform distribution U(SNR,;in, SNR ) We set

289 SNR,,;, and SNR,,,, to 5 dB and 40 dB to simulate a broad spectrum of image noise.

290 2.2.6 Bias field inhomogeneity

291  We modelled bias field corruption to mimic MRI intensity inhomogeneities arising from
292 B-field inhomogeneities and magnetic field variations. Following the approach in (Billot
293 et al., 2023a), we sampled a 4 x 4 x 4 Gaussian random volume o5, upsampled it to
294  image resolution for smooth variation, exponentiated to enforce positive multiplicative
295 effects, and applied it to the synthetic image. We normalised intensities to [0, 1] and
296 subjected the image to a random Gamma transformation to introduce additional non-

297 linear signal variations.

298 2.2.7 Final training pair

299 Figure 3 presents four examples of synthetically generated images with their
300 corresponding label maps, illustrating the variability in brain shape, structure, and
301 intensity introduced by DRIPS. These DRIPS-generated pairs can be used as input

302 and ground truth for training segmentation models.
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Zoomed-in PVS map

Synthetic brain image Zoomed-in view

303

304 Figure 3. Synthetic brain images with corresponding ground truths, obtained using the
305  proposed domain randomisation method. Note that synthetic images vary, among other aspects, in
306  anatomy, orientation, intensity, PVS distribution, and levels of Rician noise, motion artefacts, and

307  inhomogeneities.
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308 2.3 DRIPS-based model training and testing

309 DRIPS provides a basis for training segmentation networks for out-of-sample PVS
310 segmentation. In this work, we employed a 3D U-Net as the segmentation model, a
311  well-established architecture capable of capturing both local and global spatial
312  features critical for accurate segmentation. We note that the framework is architecture-

313  agnostic and can be readily adapted to alternative architectures.

314  The 3D U-Net consisted of five encoding and five decoding levels. Each level had two
315  convolutional layers with kernels of size 3 x 3 x 3, followed by a batch normalisation
316 layer and max pooling or upsampling layers, depending on whether the level was part
317  of the encoding or decoding part, respectively. All convolutional layers employed an
318 exponential linear unit activation, except for the final layer, which had a softmax
319  activation. The number of kernels per level doubled after each max pooling and halved
320 after each upsampling layer. The first layer contained 24 feature maps. The network
321  had skip connections to transfer feature maps from the encoding path to the decoding

322  path.

323 2.3.1 Training on synthetic data

324  We trained the segmentation network in DRIPS for 50 epochs, each comprising 5000
325 batches of size 1, with each image—label pair generated on the fly by the procedural
326 image generator. We used the Adam optimiser (learning rate of 10-4) and a generalised
327 Dice loss function for model optimisation. The generalised Dice loss function for
328 multiple classes is given by (Milletari et al., 2016):

2 Zx,y,z GTc(x' Y, Z) Sc(x' Y, Z)
Zx,y,z GTc(x' Y, Z)Z + SC(X, Y, Z)z’

329 Generalised Dice Loss(GT,S) =1 —
cef{0,1}
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330 where c € {0,1} denotes the considered classes (0: background, 1: PVS), and GT, and
331 S, are the ground truth and soft probability map for class c, respectively. We
332 implemented the segmentation model in Keras with a TensorFlow backend. Training

333 took approximately twelve days on an NVIDIA A100 Tensor Core GPU.

334 2.3.2 Testing on real data

335 To evaluate the model on real data, we first normalised image intensities before
336 feeding the scans into the network (Billot et al., 2023a). Inference took approximately

337 ten seconds on an NVIDIA A100 Tensor Core GPU and 60 seconds on CPU.

338 Contrast agnosticism encourages models to prioritise shape over intensity. Though
339 advantageous for generalisation, this technique makes models prone to detecting
340  “tubular” structures regardless of whether their intensity profiles match those of PVS.
341  For example, although PVS appear hypointense in T1w imaging, sections of the
342 internal and external capsules—which are not hypointense in this modality—were
343 sometimes flagged as potential PVS (non-zero response). To restrict detection to
344  hypointense structures in T1w images and hyperintense structures in T2w images, we
345 thus applied the Laplacian operator during post-processing, retaining regions with

346  positive and negative Laplacian values, respectively.

347 3 Evaluation on real data

348 3.1 Cohorts and ground truth

349 We tested DRIPS on images and manual PVS segmentations from 165 participants
350 from five cohorts: post-COVID Brain (PCB; N=42) (Besteher et al., 2022), EBBIVD
351  (N=18), heart failure with preserved ejection fraction on cerebral microangiopathy
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352 (HIM; N=39; DRKS00031583) (Muller et al., 2024), MagDeburger DrAinage-Reserve-
353 Score (MD-DARS; N=6) (Neumann et al., 2022), and ADNI-3 (N=60). Further
354 information can be found in Table 1. Ethical approval was granted by the Ethics
355 Committees of the University Hospital Magdeburg for the EBBIVD, HIM, and MD-
356 DARS cohorts, and by the Ethics Committee of Jena University Medical School for the
357 PCB cohort, and by Institutional Review Boards of all participating centres for the
358 ADNI-3 cohort. All participants provided written informed consent in accordance with

359 the Declaration of Helsinki.

360 Data used in the preparation of this article were obtained from the Alzheimer's Disease
361  Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
362 in 2003 as a public-private partnership. The original goal of ADNI was to test whether
363 serial magnetic resonance imaging, positron emission tomography, other biological
364 markers, and clinical and neuropsychological assessment can be combined to
365 measure the progression of mild cognitive impairment and early Alzheimer's disease.
366 The current goals include validating biomarkers for clinical trials, improving the
367 generalizability of ADNI data by increasing diversity in the participant cohort, and to
368 provide data concerning the diagnosis and progression of Alzheimer’s disease to the

369  scientific community. For up-to-date information, see adni.loni.usc.edu

370  Table 1. Imaging protocols, and PVS and WMH burden across cohorts. The table summarises the
371 imaging sequences, acquisition parameters, and scanner specifications used for manual PVS
372  segmentation across the PCB, EBBIVD, HIM, MD-DARS, and ADNI cohorts. We also report PVS and
373  WMH burden separately for the BG and CSO ROls, presented as median counts, volumes, and
374  fractional volumes, with interquartile ranges in brackets. Fractional volumes represent the volume of
375  PVS within a region of interest relative to the volume of the region.

PCB EBBIVD HIM MD-DARS ADNI
N 42 18 39 6 60
Normal
Normal cognition Hypertensive Individuals with Individuals cognition
- g arteriopathy heart failure with spanning the Mild cognitive
Clinical groups post-COVID . - L2 . :
Cerebral amyloid preserved ejection Alzheimer’s impairment
syndrome . . . . L
angiopathy fraction disease continuum Alzheimer’s
disease
Imaging
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Sequence for

PVS 3D T1w MPRAGE 2D T2w TSE 2D T2w TSE 2D T2w TSE 3D T1w
. MPRAGE
segmentation
_ TE = min full
Kev parameters ?Fé __22432 by TE =73 ms TE=73ms TE=73ms TR = 2300 ms
yp : T Lee TR = 6500 ms TR = 6500 ms TR = 6500 ms TI =900 ms
FA=9 00 r
FA=9
mﬁ size 0.8x0.8x0.8 0.5%0.5x2.0 0.5% 0.5 2.0 0.5%0.5x 2.0 1.0x1.0x 1.0
Magnetic field 3 3 3 3 3

strength [T]

Siemens Tim Trio

Skyra (Siemens

Skyra (Siemens

Skyra (Siemens

Scanner H(S:ehmens Healthineers, Healthineers, Healthineers, Slen;egs.,llGE,
model/vendor eEat ineers, Erlangen, Erlangen, Erlangen, and Fhlips

rlangen, G G G (multi-vendor)

Germany) ermany) ermany) ermany)
Yy
PVS burden
397 890 656 816 36
BG PVS count [311-506] [643-1368] [499-1053] (526, 1033] [17-67]
BG PVS volume 0.263 0.779 0.587 0.699 0.051
[ml] [0.212-0.342] [0.592-1.255] [0.435-0.928] [0.459, 0.992] [0.022-0.099]
Fractional BG 0.587 1.865 1.172 1,585 0.117
(%) [0.416-0.611] [1.394-2.768] [0.945-1.839] [1.118-2.046] [0.052-0.232]
1370 7692 6379 6424 510

CSO PVS count [782—2450] [5204-9056] [5012-8227] [3943, 7143] [267, 858]
CSO PVS 0.976 8.471 6.853 6.9705 0.900
volume [ml] [0.545-1.686] [5.854-9.552] [5.266-8.691] [4.275, 7.397] [0.479, 1.4305]
Fractional 5O 0.344 3.027 2.200 2.446 0.387
(%) [0.192-0.652] [1.852-3.801] [1.678-2.822] [1.468-2.579] [0.216-0.598]
WMH burden
BG WMH No FLAIR No FLAIR 0.218 0.293 0.408
volume [ml] imaging imaging [0.017-0.837] [0.032-1.537] [0.103-0.878]
CSO WMH No FLAIR No FLAIR 1.510 2.081 3.364
volume [ml] imaging imaging [0.243-7.573] [0.155-9.819] [1.374-11.382]

Under the guidance of experienced neuroradiologists, four medical residents and one

neuroscientist segmented PVS manually using either Mango or ITK-SNAP. PVS

segmentation was performed on T1w scans for PCB and ADNI, and on T2w scans for

EBBIVD, HIM, and MD-DARS, following STRIVE criteria (Duering et al., 2023). The

smallest available paint tool was used to manually delineate PVS across all axial slices

throughout the entire brain. FLAIR sequences were taken into account, when

available, to minimise the inclusion of WMH.

3.2 Evaluation metrics

We assessed PVS segmentation using voxel-wise and lesion-wise Dice similarity

coefficients (DSCvoxel and DSCiesion) and the area under the precision—-recall curve

(AUPRC). DSC.oxel quantifies spatial overlap between the predicted and ground-truth
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388 binary maps within the ROI. DSCiesion evaluates object-wise agreement after
389 connected-component labelling, measuring overlap between individual predicted and
390 reference PVS (e.g., one-inside-the-another criterion) (Maier-Hein et al., 2024).
391 AUPRC summarises segmentation performance across all possible thresholds. We

392 opted for precision—recall over receiver operating curves given the pronounced class

393 imbalance (Maier-Hein et al., 2024).

394  Since all of our evaluations are performed out-of-sample, discrepancies may arise
395 Dbetween how PVS were segmented in the training data and how they appear in an
396 unseen dataset (e.g. where PVS boundaries end). To mitigate this potential mismatch
397  and ensure a fair comparison across methods, we derived DSC values by thresholding
398 each output at the operating point on the precision—recall curve that maximised
399 segmentation performance. In practice, this corresponds to the threshold at which the

400 trade-off between sensitivity and precision yields the highest DSCyoxel.

401 Generalisation criterion. Although generalisation is inherently continuous, we
402 defined a practical criterion for it based on the expected performance under random
403 chance. Methods with performance overlapping with or below the chance-level
404 AUPRC were considered to have failed to generalise. The chance-level AUPRC value
405 is equivalent to the prevalence of the positive class within a given region of interest
406 (Saito and Rehmsmeier, 2015). In our case, this corresponds to the ratio between the
407 PVS volume in the ground truth and the total volume of the region of interest, i.e., the

408 fractional BG/CSO PVS volumes for each dataset (Table 1).

409 3.3 Regions of interest

410 We applied SynthSeg (Billot et al., 2023a) to T2w or T1w images to obtain

411  parcellations, which we then aggregated to generate masks for the basal ganglia and
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412 the centrum semiovale region of interest (BG ROI and CSO ROI). The BG ROls
413 included the internal and external capsules, caudate, lentiform, and thalamic nuclei,
414  while the CSO ROI covered the remaining supratentorial white matter. While these
415 two ROls do not precisely match anatomical structures, we adhered to the established
416  nomenclature to maintain consistency with widely used visual rating methods in the
417 field (Potter et al., 2015). We refined these masks to guarantee the exclusion of the

418 ventricular atrium, choroid plexus, and posterior horns of the lateral ventricles via atlas

419 reqistration (https://doi.org/10.7488/ds/1369). All regions of interest were kept identical

420 across evaluated methods to ensure that observed differences arose from the

421 methods themselves rather than from variations in ROI definition.

422 3.4 Competing methods

423 We compared DRIPS against four other methods: the Frangi filter (Frangi et al., 1998),
424 RORPO (Ranking the Orientation Responses of Path Operators) (Merveille et al.,
425 2018, 2014), SHIVA-PVS (Boutinaud et al., 2021b), and nnU-Net (Pham et al., 2024).
426 Both SHIVA-PVS and nnU-Net were used as pretrained models, tested only in an out-

427  of-sample setting, with no training performed on the cohorts used in this study.

428 Frangi and RORPO are classical strategies designed for enhancing tubular structures.
429 Frangi relies on Hessian-based voxel analysis of shape features, while RORPO
430 applies multi-orientation path opening to distinguish tubular from spherical structures.
431 We employed a thoroughly validated pipeline developed at the University of Edinburgh
432 that integrates both methods (more details can be found in (Ballerini et al., 2018;
433 Bernal et al., 2022; Duarte Coello et al., 2024; Valdés Hernandez et al., 2024); the

434  step-by-step pipeline can be found in https://datashare.ed.ac.uk/handle/10283/8501).

435 Unlike standard Frangi filter implementations, the pipeline modifies the Gaussian
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436 filtering step to handle anisotropic voxel sizes. We employed the uint8 conversion step
437 for RORPO provided in the pipeline and used parameter settings derived from earlier
438 optimisation studies (Frangi: Omin = 0.4, Omax = 1.2, Ostep = 0.2, 0 = 0.5, 3 =0.5,and c
439 =500; RORPO: scaleMin=1, nbscales = 9, factor=1.7, dilationSize=1) (Ballerini et al.,
440 2018; Bernal et al., 2022; Duarte Coello et al., 2024). We did not use any other pre-

441  or post-processing strategies.

442 SHIVA-PVSis a U-Net-based convolutional neural network designed to segment PVS
443 on T1w MRI scans. It requires input images of size 160 x 214 x 176, witha 1 x 1 x 1
444 mm? isotropic resolution and intensity values normalised to [0,1]. Pre-processing
445 involved rigid registration of all T1w images to MNI space, cropping to the required
446  dimensions, and applying min—max normalisation. Following inference, the resulting
447 segmentations were padded and transformed back to native space using the inverse
448 rigid registration. The algorithm requires no parameter tuning and is publicly available

449  on GitHub: https://qithub.com/pboutinaud/SHIVA PVS.

450 nnU-Netis a convolutional neural network that extends the no-new-U-Net (nnU-Net)
451 (Isensee et al.,, 2021) for PVS segmentation. Two modality-specific models were
452  trained, one for T1w and one for T2w images. We refer to the models as nnU-Net
453 (T1w) and nnU-Net (T2w), respectively. Models requires no manual parameter tuning,
454  as all pre-processing, processing, and post-processing steps are automated and

455 implemented in the publicly available codebase: https://github.com/wpham17/nnUNet-

456  Perivascular-Spaces.

457 3.5 Generalisation to other imaging modalities

458 Since our aim was to assess the generalisation capabilities of models trained with

459 DRIPS and the transferability of its learnt features, we also examined whether it could
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460 extend to imaging modalities beyond MRI. As a proof of concept, we applied it to a 3D
461 ex-vivo model of the human brain (Amunts et al., 2013). The Human Brain Histology
462  dataset provides an ultrahigh-resolution 3D model of the human brain reconstructed
463 from 7404 histological sections. For compatibility with our models and due to hardware
464 constraints, the data were converted to greyscale and downsampled to 1 mm?
465 resolution. Manual PVS segmentation was then performed on five axial slices in the

466 BG ROI and five axial slices in the CSO ROI by an experienced image analyst using

467 ITK-Snap with the smallest available drawing tools.

468 4 Results

469 4.1 Ablation study

470 We evaluated the impact of individual DRIPS modules by comparing a model
471  incorporating them with one that did not. We conducted these assessments on real

472 data. It should be noted that the real data were not modified in any way.

473 4.1.1 Effect of voxel size variation in DRIPS on model performance

474  To assess the effect of resampling and voxel size variation in DRIPS (Section 2.2.1),
475 we compared the performance of two models: one with fixed and one with variable
476  voxel sizes. We did this evaluation using data from the EBBIVD cohort (Figure 4). The
477  use of variable voxel sizes led to a significant (P<0.001) and consistent improvement
478 in segmentation performance. In the BG, median AUPRC improved from 0.325
479 [0.210-0.423] to 0.459 [0.358-0.541], DSCyoxel from 0.397 [0.276-0.459] to 0.499
480 [0.432-0.555], and DSCiesion from 0.508 [0.322—-0.552] to 0.635 [0.567—0.679]. In the

481 CSO, median AUPRC rose from 0.256 [0.236—0.338] to 0.363 [0.304—0.439], DSCyoxel
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from 0.323 [0.305-0.386] to 0.423 [0.348-0.463], and DSCiesion from 0.435 [0.393-

0.506] to 0.532 [0.461-0.570)].

Original
image Fixed size Variable size
N BG ROI BG ROI BG ROI
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Figure 4. Allowing variable voxel sizes during image generation yielded better segmentation
performance than using fixed voxel sizes. To illustrate this effect, we evaluated performance on
EBBIVD, a cohort with highly anisotropic voxels (2.2 mm). Fewer PVS were segmented when models
were trained with fixed voxel sizes compared to variable ones (left). With fixed voxel sizes, the model
systematically missed multiple PVS in both normal-appearing white matter and WMH. For clarity,
outputs were truncated to the 0.0-0.10 interval. At the cohort level, Wilcoxon signed-rank tests
confirmed significant differences (P<0.0001) in both AUPRC and DSC across regions of interest (right).

4.1.2 Effect of motion simulation in DRIPS on model performance

We assessed how simulating motion in DRIPS influenced segmentation performance
(Section 2.2.4), using data from the EBBIVD cohort. We compared the performance
of two models: one incorporating motion simulation during training and one not (Figure
4). Motion simulation enhanced the model’s ability to distinguish true PVS from motion-
induced ghosting, as illustrated in case-level examples with and without visible motion.
At the group level, where both motion-affected and unaffected images are present,
performance in the BG was comparable between models: AUPRC 0.469 [0.336—
0.545] without vs. 0.459 [0.358-0.541] with motion, DSCyoxel 0.509 [0.406—0.556] vs.

0.499 [0.432-0.555], and DSCiesion 0.628 [0.517-0.701] vs. 0.635 [0.567-0.679]. In
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503 the CSO, however, the motion-trained model was slightly more conservative voxel-
504 wise, with AUPRC 0.390 [0.299-0.432] vs. 0.363 [0.304-0.439] (P=0.031), but

505 achieved a higher DSCiesion, 0.493 [0.430-0.510] vs. 0.532 [0.461-0.570] (P<0.001).
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506

507 Figure 5. Incorporating motion artefacts during image generation results in a more conservative
508 model with improved ability to separate motion artefacts from PVS. To illustrate this effect, we
509 evaluated performance on EBBIVD and show probability maps for two cases: one with visible motion
510  artefacts (left top row) and one without (left bottom row). When trained with motion artefacts, the model
511 demonstrated improved ability to separate true PVS from motion-induced ghosting. In the motion case,
512  the best DSCuvoxel and DSCiesion Values without motion augmentation were 0.288 and 0.235, respectively,
513  whereas training with motion artefacts increased them to 0.334 and 0.258. In cases without visible
514 motion artefacts, both models yielded comparable results. At the group level, where images with and
515  without motion artefacts are present, no differences were observed for BG PVS. For CSO PVS,
516 however, the model trained with motion artefacts tended to be more conservative in detection but, once
517  optimally thresholded, identified lesions better than the model trained without motion artefacts.

518

519 4.1.3 Effect of Laplacian constraint on model performance

520 We tested whether applying a Laplacian constraint to restrict detections to hypointense
521  structures on T1w images and hyperintense structures on T2w images improved
522 segmentations yielded by DRIPS (Section 2.3.2). We compared the performance of
523 DRIPS with and without post-processing of its outputs using data from PCB (Figure
524 6). The Laplacian constraint significantly (P<0.0001) reduced the number of false

525 positives, leading to overall improvements in PVS segmentation. In the BG ROI,
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526 AUPRC increased from 0.416 [0.307—-0.506] to 0.494 [0.409-0.567], DSCyoxel from
527  0.465 [0.373-0.528] to 0.509 [0.441-0.570], and DSCiesion from 0.571 [0.406—0.635]
528 to 0.590 [0.445-0.667]. In the CSO ROI, AUPRC improved from 0.454 [0.321-0.558]

529 100.515[0.380-0.611], DSCyoxel from 0.479 [0.397-0.555] to 0.522 [0.424-0.590], and

530 DSCiesion from 0.615 [0.477—-0.694] to 0.635 [0.471-0.692].
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531

532 Figure 6. With the Laplacian constraint, only tubular structures matching the expected intensity
533 profiles are detected. We assessed the effect of the Laplacian constraint on segmentation
534 performance using the PCB cohort, which consists of T1w images where PVS appear hypointense.
535 Because DRIPS is contrast-agnostic, it disregards intensity information. As a result, models trained with
536 DRIPS may identify tubular structures regardless of whether they are hypo- or hyperintense, even
537  though PVS present with a specific intensity profile. Such cases occurred most frequently within the
538 internal and external capsules. By retaining regions with positive Laplacian values in T1w and negative
539  valuesin T2w images, the Laplacian constraint reduced false positives and improved the quality of PVS
540  segmentation overall.

541 4.2 Out-of-sample PVS segmentation

542  We compared DRIPS against Frangi, RORPO, SHIVA-PVS, and nnU-Net (Table 2).
543 Below, we focus on two aspects: whether methods generalise out-of-sample and, if

544  so, how they compare with one another.
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545 4.2.1 Generalisation

546 DRIPS generalised across all cohorts, independent of voxel anisotropy or image
547  modality (T1w/T2w). The other method that ran successfully on all datasets was the
548  Frangi filter. RORPO was not able to segment any PVS on ADNI. The generalisation
549 of SHIVA-PVS and the nnU-Net models was limited to their respective training
550 modalities, with AUPRC values overlapping with or falling below those of a random

551 classifier when applied to unseen modalities.

552 4.2.2 Segmentation performance

553 In cohorts with isotropic T1w imaging (PCB and ADNI), DRIPS and nnU-Net (T1w)
554  were the top performers. Compared to the third-best method, they showed median
555 improvements of +0.17-0.39 in AUPRC, +0.09-0.26 in DSCyoxel, and +0.14—-0.25 in

556 DSCIesion-

557 In PCB, DRIPS and nnU-Net (T1w) performed similarly in the BG ROI, with no
558 significant differences across AUPRC (0.504 [0.406-0.568] vs 0.445 [0.421-0.535],
559  P=0.644), DSCyoxe (0.512[0.440-0.570] vs 0.516 [0.483-0.571], P=0.163) or DSCiesion
560 (0.589 [0.442-0.667] vs 0.553 [0.473-0.619], P=0.396). In the CSO ROI, however,
561 nnU-Net (T1w) achieved significantly higher scores, leaving DRIPS as the second-
562 best performer (AUPRC: 0.515 [0.369-0.608] vs 0.549 [0.450-0.636], P<0.001;
563 DSCyoxe: 0.521 [0.418-0.587] vs 0.543 [0.484—0.610], P<0.001; DSCiesion: 0.630

564 [0.460-0.690] vs 0.649 [0.581-0.736], P<0.001).

565 In ADNI, DRIPS significantly outperformed nnU-Net (T1w) in the BG ROI across all
566 metrics (AUPRC: 0.569 [0.417-0.662] vs 0.474 [0.340-0.535], P=0.003; DSCyoxel:
567 0.564 [0.460-0.651] vs 0.322 [0.175—-0.421], P<0.001; DSCiesion: 0.685 [0.571-0.823]

568 vs 0.517 [0.437-0.588], P<0.001). In the CSO ROI, results were more balanced:
28
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569 DRIPS had higher sensitivity, detecting more PVS (DSCiesion: 0.680 [0.616—0.720] vs
570 0.593 [0.534-0.667], P<0.001), while nnU-Net (T1w) provided slightly more precise

571  delineation (DSCyoxei: 0.636 [0.575-0.657] vs 0.652 [0.563—-0.690], P=0.040).

572 In cohorts with anisotropic T2w imaging (EBBIVD, HIM, and MD-DARS), DRIPS had
573 the best performance, followed generally by Frangi, RORPO, and the nnU-Net (T2w)
574  in that order. The performance gap between DRIPS and the second-best method was
575  most pronounced in the CSO ROI, with median gains of +0.17-0.22 in AUPRC, +0.12-
576  0.14 in DSCyoxel, and +0.06-0.09 in DSCiesion. In the BG ROI, the gap was smaller yet
577  consistent, with AUPRC gains of +0.13-0.17, DSCyoxel gains of +0.07-0.12, and

578  DSCiesion gains of +0.03-0.09.

579 SHIVA-PVS typically underperformed (AUPRC<0.10; DSC<0.15), with the only

580 exception in CSO PVS segmentation in ADNI, where it placed third above Frangi.
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581
582
583
584
585

586

Table 2. Out-of-sample PVS segmentation performance across five cohorts. We assessed PVS segmentation in the basal ganglia (BG ROI) and the
centrum semiovale (CSO ROI) using voxel- and lesion-wise Dice similarity coefficients (DSCuoxel and DSCesion) and the area under the precision—recall curve
(AUPRC). We report medians with interquartile ranges, and “NA” where no PVS could be segmented. We identified the best-performing methods across regions
and cohorts using the Wilcoxon signed-rank test and highlighted them in bold. Following the generalisability criterion described in Section 3.2, we marked with
“NG” all AUPRC values that overlapped with or fell below the expected performance of a random classifier.

Method Metric PCB EBBIVD HIM MD-DARS ADNI
(N=42) (N=18) (N=39) (N=6) (N=60)
AUPRC 0.263 [0.213-0.321] 0.334 [0.272-0.348] 0.331[0.269-0.360] 0.294 [0.253-0.314] 0.198 [0.101-0.324]
Frangi DSCroxel 0.331[0.292-0.391] 0.425 [0.379-0.439] 0.407 [0.372-0.443] 0.388 [0.345-0.404] 0.342 [0.247-0.445]
DSClesion 0.447 [0.390-0.493] 0.592 [0.524-0.629] 0.556 [0.516-0.639] 0.556 [0.529-0.596] 0.467 [0.323-0.583]
AUPRC 0.203 [0.168-0.287] 0.324 [0.234-0.351] 0.308 [0.214-0.361] 0.264 [0.219-0.336] NA
RORPO DSCroxel 0.303 [0.242-0.374] 0.417 [0.376-0.453] 0.415 [0.356-0.451] 0.381[0.347-0.421] NA
DSClesion 0.252 [0.207-0.326] 0.424 [0.376-0.541] 0.432 [0.363-0.493] 0.421 [0.365-0.450] NA
SHIVA. AUPRC 0.060 [0.049-0.073] 0.018[0.015-0.025] (NG)  0.013[0.010-0.018] (NG)  0.013 [0.011-0.019] (NG) 0.101 [0.037-0.158]
5 pvs DSCroxel 0.134 [0.114-0.154] 0.040 [0.032-0.048] 0.032 [0.028-0.039] 0.036 [0.033-0.042] 0.214 [0.108-0.285]
& DSClesion 0.242 [0.193-0.275] 0.039 [0.023-0.094] 0.078 [0.039-0.103] 0.094 [0.062-0.108] 0.426 [0.330-0.520]
Q et AUPRC 0.445 [0.421-0.535] 0.009 [0.006-0.012] (NG)  0.006 [0.005-0.008] (NG)  0.007 [0.004—0.008] (NG) 0.474 [0.340-0.535]
@ T1w) DSCuoxel 0.516 [0.483-0.571] 0.031 [0.024-0.045] 0.021[0.017-0.032] 0.026 [0.018-0.033] 0.322[0.175-0.421]
DSClesion 0.553 [0.473-0.619] 0.028 [0.023-0.035] 0.032 [0.027-0.041] 0.035 [0.025-0.044] 0.517 [0.437-0.588]
nUnet AUPRC 0.009 [0.006-0.011] (NG) 0.100 [0.057-0.141] 0.107 [0.082-0.136] 0.087 [0.078-0.106] 0.002 [0.001-0.006] (NG)
(T2w) DSCroxel 0.027 [0.022-0.037] 0.208 [0.121-0.251] 0.225 [0.173-0.254] 0.216 [0.180-0.220] 0.013 [0.005-0.027]
DSClesion 0.050 [0.042-0.065] 0.278 [0.184-0.344] 0.282 [0.217-0.343] 0.283 [0.202-0.365] 0.041 [0.023-0.090]
AUPRC 0.504 [0.406-0.568] 0.459 [0.358-0.541] 0.503 [0.426-0.553] 0.424 [0.396-0.447] 0.569 [0.417—-0.662]
DRIPS DSCuoxel 0.512 [0.440-0.570] 0.499 [0.432-0.555] 0.532 [0.488-0.567] 0.475 [0.471-0.478] 0.564 [0.460-0.651]
DSClesion 0.589 [0.442-0.667] 0.635 [0.567—-0.679] 0.646 [0.618-0.697] 0.581 [0.571-0.478] 0.685 [0.571-0.823]
AUPRC 0.170 [0.119-0.276] 0.185 [0.129-0.253] 0.192 [0.156-0.250] 0.150 [0.121-0.180] 0.272[0.157-0.362]
Frangi DSCroxel 0.311 [0.249-0.409] 0.286 [0.249-0.341] 0.314 [0.268-0.340] 0.260 [0.238-0.289] 0.381 [0.269-0.447]
DSClesion 0.429 [0.333-0.546] 0.472[0.383-0.515] 0.451 [0.394-0.514] 0.391 [0.340-0.440] 0.426 [0.362-0.509]
AUPRC 0.181[0.103-0.309] 0.196 [0.119-0.244] 0.181[0.127-0.263] 0.148[0.112-0.179] NA
RORPO DSCroxel 0.311[0.219-0.429] 0.301 [0.220-0.354] 0.290 [0.227-0.360] 0.253 [0.208-0.287] NA
DSClesion 0.376 [0.252-0.484] 0.344 [0.267-0.408] 0.309 [0.264-0.388] 0.298 [0.217-0.325] NA
SHIVA. AUPRC 0.011 [0.005-0.022] 0.026 [0.018-0.032] (NG)  0.013[0.010-0.018] (NG)  0.019 [0.013-0.020] (NG) 0.421[0.319-0.481]
3  pus DSCroxel 0.035 [0.019-0.056] 0.049 [0.035-0.060] 0.039 [0.029-0.049] 0.038 [0.025-0.042] 0.469 [0.417-0.521]
x DSClesion 0.063 [0.038-0.110] 0.014 [0.001, 0.031] 0.014 [0.005, 0.023] 0.010 [0.005-0.018] 0.564 [0.487-0.652]
2 nUnet AUPRC 0.549 [0.450-0.636] 0.013[0.008-0.016] (NG)  0.010 [0.007-0.012] (NG)  0.009 [0.007-0.011] (NG) 0.632 [0.564-0.697]
S Tiw DSCroxel 0.543 [0.484-0.610] 0.047 [0.029-0.059] 0.037 [0.028-0.047] 0.037 [0.025-0.040] 0.652 [0.563-0.690]
DSClesion 0.649 [0.581-0.736] 0.010 [0.009, 0.014] 0.010 [0.008-0.015] 0.013 [0.007-0.015] 0.593 [0.534-0.667]
nUnet AUPRC 0.003 [0.017-0.005] (NG) 0.140 [0.106-0.177] 0.160 [0.124-0.206] 0.116 [0.105-0.136] 0.007 [0.004-0.010] (NG)
(T2w) DSCroxel 0.007 [0.005-0.012] 0.216 [0.181-0.246] 0.256 [0.210-0.302] 0.209 [0.200-0.224] 0.019 [0.013-0.029]
DSClesion 0.014 [0.010-0.019] 0.296 [0.263-0.327] 0.348 [0.293-0.399] 0.284 [0.232-0.330] 0.046 [0.028-0.059]
AUPRC 0.515 [0.369-0.608] 0.363 [0.304-0.439] 0.409 [0.336-0.464] 0.323 [0.286-0.358] 0.665 [0.569-0.698]
DRIPS DSCroxel 0.521[0.418-0.587] 0.423 [0.348-0.463] 0.452 [0.399-0.482] 0.387 [0.352-0.412] 0.636 [0.575-0.657]
DSClesion 0.630 [0.460-0.690] 0.532 [0.461-0.570] 0.545 [0.498-0.616] 0.467 [0.402-0.521] 0.680 [0.616-0.720]
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587 4.2.3 WMH and PVS segmentation

588 WMH can impair accurate PVS segmentation. To assess this effect, we examined the
589 relationship between WMH volume and AUPRC using Spearman correlations (Figure
590 7). For this secondary analysis, we used data from ADNI, HIM, and MD-DARS (N =
591  105), all of which had WMH segmentations. We combined HIM and MD-DARS due to
592 the small sample size of MD-DARS, which could otherwise lead to spurious

593 correlations. The analysis focused on models that successfully generalised.

594 In the BG ROI, AUPRC values obtained by the Frangi filter in both T1w and T2w
595 imaging, by RORPO in T2w imaging, and by SHIVA-PVS in T1w imaging increased
596  with greater WMH volume (P < 0.01). The underlying reasons differed between
597 SHIVA-PVS and the Frangi filter or RORPO. SHIVA-PVS performed better in cases
598  with more visible BG PVS (Figure 8), which occurred more frequently in patients with
599 greater WMH burden (Spearman correlation between BG PVS volume and BG WMH
600 volume in ADNI: p = 0.396, P = 0.002). Both the Frangi filter and RORPO produced
601  non-zero responses within WMH. In patients with higher BG WMH burden, many WMH
602 voxels were adjacent or around to true PVS, causing false detections to overlap with
603 true positives and artificially inflating recall rates and AUPRC (Figure 8). Unlike Frangi,
604 RORPO, and SHIVA-PVS, AUPRC of the nnU-Net models (T1w and T2w) and DRIPS

605 inthe BG ROI did not relate to BG WMH volumes (P > 0.10).

606 In the CSO ROI, AUPRC values of the Frangi filter in both T1w and T2w imaging, as
607 well as that of the nnU-Net (T2w) in T2w imaging, declined with increasing WMH
608 volume in the same region (P < 0.05). The reasons behind these associations differed
609 between methods. The Frangi filter generally marked WMH as potential PVS. As a

610 result, higher WMH burden produced more false positives and consequently lower
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AUPRC values (Figure 8). In contrast, the nnU-Net (T2w) more effectively disregarded
WMH as potential PVS candidates, but this same ability also led to the omission of
PVS located within WMH regions (Figure 8). The AUPRC values obtained by RORPO,
SHIVA-PVS, nnU-Net (T1w), and DRIPS in the CSO ROI were not associated with

CSO WMH volumes (P > 0.05).
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Figure 7. Relationship between segmentation performance (AUPRC) and regional WMH volume
for each algorithm across the ADNI and HIM and MD-DARS. We studied these relationships using
Spearman correlation coefficients (shown above each subplot). Algorithms that failed or showed limited
generalisation within specific datasets were excluded from this secondary analysis (ADNI: RORPO,
nnU-Net (T2w); HIM+MD-DARS: SHIVA-PVS, nnU-Net (T1w)). We used the Greek letter p to denote
the Spearman correlation coefficient and P to denote its p-value.
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624  Figure 8. Response map yielded by PVS segmentation methods on T2w and T1 imaging. (A)
625 Maps obtained from all methods that generalised to T2w imaging. The Frangi filter and RORPO
626 produced non-zero responses within WMH. In patients with higher BG WMH burden, false detections
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near true PVS often overlapped spatially, artificially inflating AUPRC (white and green arrows). On the
other hand, the nnU-Net (T2w) tended to miss PVS located within WMH (green arrow). (B) Maps
obtained from all methods that generalised to T1w imaging. SHIVA-PVS identified salient as opposed
to subtle PVS (yellow vs blue arrows).

4.3 Generalisation to other imaging modalities

We evaluated the generalisation capacity of DRIPS and the four competing methods
beyond MRI, with particular emphasis on their transferability to a 3D ex vivo brain
model reconstructed from histology (Figure 9). Histology-to-MNI registration was
unsuccessful with SynthMorph and ANTs, preventing SHIVA-PVS from being
evaluated. DRIPS achieved the best performance across both BG and CSO ROiIs. In
the BG, it reached a DSCiesion 0f 0.477, DSCyoxel 0f 0.482, and AUPRC of 0.512, clearly
outperforming all other methods (next best DSCiesion 0.373 with RORPO, DSCyoxel
0.260 with Frangi, and AUPRC 0.205 with RORPO). In the CSO, it again obtained the
highest scores with DSCiesion 0.629, DSCuoxel 0.592, and AUPRC 0.625, surpassing
RORPO (0.607/0.466/0.475), nnU-Net (T1w; 0.542/0.517/0.450), and Frangi

(0.564/0.492/0.493). nnU-Net (T2w) did not generate meaningful PVS segmentations.
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Figure 9. PVS segmentation on a 3D ex-vivo brain model reconstructed from histology images.
(A) Segmentation performance, as measured by AUPRC and Dice at both voxel and lesion level.
Registration of histology images to MNI space was unsuccessful with SynthMorph and ANTSs,
preventing SHIVA-PVS evaluation. The nnU-Net (T2w) could not segment PVS successfully. The
classical methods, Frangi and RORPO, successfully segmented PVS as expected due to their modality-
agnostic design. Both nnU-Net (T1w) and DRIPS produced valid segmentations. DRIPS outperformed
all other methods across both regions of interest. RORPO and Frangi achieved the next best results,
while nnU-Net (T1w) had the lowest performance. (B) Example segmentations in the CSO and BG ROls
of histology sections. Across algorithms, thresholds were chosen to yield the highest voxel-level Dice
coefficients. Segmentation in the CSO ROI was successful across methods, whereas performance in
the BG ROI was impaired by systematic errors, including misclassification of the claustrum as PVS
(white arrow) and spurious segmentation of multiple thalamic structures as PVS (yellow arrow).
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5 Discussion

In recent years, deep learning has become the dominant paradigm for PVS
segmentation (Waymont et al., 2024) and for medical image analysis more broadly,
primarily owing to its strong within-dataset performance. Yet, as also illustrated by our
findings, such models often struggle to generalise when faced with data distributions
or imaging modalities not represented during training. Unlike classical approaches—
which may be less accurate in noisy settings but still provide a usable output—deep
learning models can fail outright when applied outside their training domain, producing
no meaningful segmentation. However, relying on constant manual labelling and fine-

tuning for every new dataset is neither scalable nor sustainable.

Against this backdrop, our aim was not to develop a model narrowly optimised for a
single dataset, but to propose a new PVS segmentation method that achieves high
accuracy and robust generalisation across imaging sequences and cohorts. By
leveraging physics-based image generation and domain randomisation, we
demonstrated that it is possible to mitigate domain shifts and achieve accurate PVS
segmentation under conditions seen during training. Across five independent cohorts,
we show that DRIPS can (i) segment PVS on both isotropic and anisotropic T1- and
T2w images, (ii) outperform classical and machine learning—based approaches, (iii)
segment PVS independently of the overall WMH burden, and (iv) generalise even to
other modalities, including histology. Taken together, these results position DRIPS as

a robust and versatile framework for PVS segmentation.
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5.1 Physics-inspired domain randomisation

DRIPS brings together two complementary research directions: domain randomisation
and physics-inspired data augmentation. Domain randomisation tackles the challenge
of generalisation by exposing models to synthetic data generated from segmentations
with fully randomised parameters (Tobin et al., 2017), enabling the learning of robust
and transferable features provided that the synthetic variability adequately reflects
real-world conditions (Billot et al., 2023a). Physics-inspired data augmentation builds
on this by modelling the image acquisition process and its artefacts, thereby enhancing
realism and surpassing purely agnostic randomisation strategies (Adams et al., 2024).
We observed that introducing voxel size variability through resampling and simulating
motion artefacts both contributed positively to performance. Resampling proved
essential for handling anisotropic scans. Overall, DRIPS achieved consistent
improvements of approximately 0.10-0.13 across all evaluation metrics, with slightly
greater gains in the BG compared to the CSO, when resampling was considered as
opposed to when it was not. Simulating motion artefacts also helped models trained
with DRIPS distinguish true PVS from motion-related ghosting, as seen in case-level
examples. At the group level, performance in the BG was largely unaffected by motion
training, whereas in the CSO it led to slightly lower voxel-wise precision—recall but
significantly improved lesion-wise detection, suggesting a more conservative yet

accurate segmentation strategy.

5.2 DRIPS segments PVS accurately on real MRI data

Conventional deep learning approaches to PVS segmentation have typically
depended on small, carefully curated training datasets. While such models can
achieve high accuracy within their training domain, they often fail to generalise well to
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new datasets. SHIVA-PVS, a 3D U-Net trained solely on T1w images, exemplifies this
limitation: it did not transfer to T2w scans and showed only limited sensitivity to PVS
even within its training modality. A similar limitation was seen with the nnU-Net
framework, where models trained on T1w images could only process T1w data, and
likewise for T2w images, with little to no generalisation across modalities. Clearly,
training separate models for each input modality offers a practical workaround, but it

bypasses rather than addresses the fundamental issue of generalisability.

In contrast, our results highlight the utility of domain randomisation for bridging the
generalisation gap. DRIPS had stable performance across both T1- and T2w images
without the need for retraining, and importantly, the learned features also transferred
to histological data—a modality entirely distinct from MRI. These findings reinforce the
central premise of domain randomisation: that exposure to sufficiently diverse
synthetic variation enables models to acquire representations that remain applicable

beyond their original training domain.

5.3 DRIPS versus competing approaches

We compared DRIPS to both classical image-processing-based and machine
learning—based methods, using scans and manual annotations from five cohorts (n =
165) that included healthy controls as well as individuals with Long-COVID,
hypertensive arteriopathy, cerebral amyloid angiopathy, heart failure, mild cognitive
impairment, and Alzheimer’s disease. DRIPS outperformed all competing methods on
anisotropic scans (EBBIVD, HIM, and MD-DARS) and ranked among the top two on

isotropic scans (PCB and ADNI).

On anisotropic T2w scans, the conventional Frangi filter generally emerged as the

second-best method. This finding carries important implications for prior studies: when
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carefully tuned, Frangi can achieve accurate PVS segmentation, outperforming all
machine learning—based methods aside from DRIPS. Its main drawback, as with any
other classical PVS segmentation strategy, is the need for manual calibration on each

new dataset to reach optimal performance.

On isotropic T1w scans, nnU-Net and DRIPS achieved the highest overall
performance, surpassing all other methods by median margins of at least 0.17 in
AUPRC, 0.09 in DSCyoxel, and 0.14 in DSCiesion. The marked improvement in precision
and recall over classical image-processing methods likely stems from the fact that, as
shown in Figure 8 and Figure 9, regions such as the boundaries of the putamen,
pallidum, and claustrum are often misidentified as PVS by these methods solely due
to their “tubular’ appearance. Note that, in general, signal intensity differences
between the basal ganglia and the surrounding white matter on T1w imaging—
particularly at higher field strengths—can also be erroneously highlighted as PVS. In
these situations, post-processing strategies that analyse jointly location, length and
shape become essential. Their impact on the segmentation performance of classical
techniques was not evaluated in this study, as it lay outside the primary scope of our

work.

5.4 Robustness against WMH

Previous studies have shown that the presence of WMH can substantially compromise
the performance of PVS segmentation methods (Bernal et al., 2022; Pham et al., 2022;
Valdes Hernandez et al., 2013; Waymont et al., 2024). Our findings align with this
evidence, revealing that both classical and deep learning approaches are often
dependent on the regional WMH burden. Traditionally, one of the most common ways

to mitigate this issue has been to exclude WMH from analyses. However, as illustrated
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by the nnU-Net (T2w), this approach introduces its own bias: by excluding WMH, the
method inherently omits PVS that overlap with them, creating artificial correlations with
WMH volume, since individuals with more WMH also tend to have more PVS within

them.

Both extremes—erroneously labelling WMH as PVS or excluding WMH entirely—are
suboptimal. The goal should instead be to develop models whose performance is
independent of WMH burden. In this regard, our results indicate that DRIPS was able
to segment PVS comparably accurately even in cases with high WMH volumes,
without its performance being significantly compromised or biased, regardless of
whether input data were T1w or T2w images. A similar pattern was observed for the
nnU-Net (T1w) in T1w imaging. Although these findings are based on a limited sample
(60 T1w and 45 T2w images), they represent a promising step towards developing
segmentation methods that are more robust and less biased by co-occurring brain

lesions.

5.5 Limitations and future work

Despite the demonstrated generalisability of our approach, four limitations merit
consideration. First, we modelled PVS as tortuous tubular structures distributed
throughout the brain. While effective for training and segmentation, this abstraction
oversimplifies their biology. In vivo, PVS are closely aligned with the cerebral
vasculature, following the trajectories of arterioles, capillaries, and venules, with their
orientation, calibre, and spatial density shaped by vascular anatomy, regional blood
supply, and vessel tortuosity. Second, we assumed a predominant orientation towards
the lateral ventricles. This is a reasonable approximation for PVS in the centrum

semiovale, which often follow medullary arteries radiating to the ventricles, but it does
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not hold in other regions—for instance, PVS surrounding the lenticulostriate arteries
in the basal ganglia, which typically run perpendicular to the axial plane. Looking
ahead, these limitations highlight an opportunity: conditioning PVS generation on
vascular maps could produce more physiologically plausible simulations, improving
anatomical fidelity and reducing false positives in regions where tubular structures
occur independently of vessels. Third, in this work, we implemented the segmentation
network in DRIPS as a 3D U-Net and did not investigate alternative, more advanced
architectures. While this represents a limitation, it was not the primary focus of our
study. Our main objective was to demonstrate that DRIPS can achieve accurate and
robust PVS segmentation across multiple cohorts, health conditions, and imaging
settings, rather than to develop a new method optimised for peak performance.
Exploring whether more sophisticated segmentations models—such as nnU-Net or
transformers—can further improve performance represents an important direction for
future work. Fourth, although our evaluation included data from multiple individuals
across five cohorts spanning a wide range of conditions—from normal cognition to
post-COVID syndrome, hypertensive arteriopathy, cerebral amyloid angiopathy, heart
failure, mild cognitive impairment, and Alzheimer’s disease—our assessment remains
limited by the imaging protocols included in this study. As part of our future work, we
plan to include patients spanning a broader range of disease severities—from very
mild to advanced—scanned using multiple imaging sequences, and to conduct
longitudinal assessments to evaluate the method’s ability to track changes in PVS over

extended periods of time.
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6 Conclusion

We introduced DRIPS, the first physics-inspired domain randomisation framework for
accurate out-of-sample PVS segmentation. DRIPS accurately segmented PVS in both
T1w and T2w images, at isotropic and anisotropic resolutions, without requiring
manual PVS segmentations, retraining, or fine-tuning. It outperformed all competing
methods on anisotropic images and achieved performance comparable to nnU-Net on
isotropic data. Unlike the segmentation performance of competing methods, its
performance was not associated by the volume of WMH in the brain. DRIPS’s out-of-
sample capabilities extended beyond MRI, successfully segmenting PVS in 3D ex vivo
brain models reconstructed from histology. Collectively, our findings demonstrate that
DRIPS segments PVS accurately across diverse imaging settings and patient
populations, enabling more accessible and reliable automated PVS quantification for

both research and clinical use.
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