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egmentation of infant brain MRI data based on adult or pediatric reference data
may not be appropriate due to the developmental differences between the infant input data and the
reference data. In this study we have constructed infant templates and a priori brain tissue probability maps
based on the MR brain image data from 76 infants ranging in age from 9 to 15 months. We employed two
processing strategies to construct the infant template and a priori data: one processed with and one without
using a priori data in the segmentation step. Using the templates we constructed, comparisons between the
adult templates and the new infant templates are presented. Tissue distribution differences are apparent
between the infant and adult template, particularly in the gray matter (GM) maps. The infant a priori
information classifies brain tissue as GM with higher probability than adult data, at the cost of white matter
(WM), which presents with lower probability when compared to adult data. The differences are more
pronounced in the frontal regions and in the cingulate gyrus. Similar differences are also observed when the
infant data is compared to a pediatric (age 5 to 18) template. The two-pass segmentation approach taken
here for infant T1W brain images has provided high quality tissue probability maps for GM, WM, and CSF, in
infant brain images. These templates may be used as prior probability distributions for segmentation and
normalization; a key to improving the accuracy of these procedures in special populations.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Spatial normalization of individual imaging data to a common
reference frame allows us to make statistical inferences across and
between groups of individuals. This is usually accomplished by
transforming individual image data to a standardized stereotaxic
space. Typically, registration and warping of an individual brain into a
stereotaxic space is done using a template created from the average of
a large number of brain images (Guimond et al., 2000). Talairach and
Tournoux described the original method for transforming brain
images into a common reference frame based on detailed anatomical
measurements in a single individual (Talairach and Tournoux 1988).
More recently, the coordinate frame created at the Montreal
Neurological Institute (MNI) was constructed from 152 healthy adults
between the ages of 18 and 44 years (Evans et al., 1993). However, the
use of this template for spatial normalization in special populations
such as children, infants and neonates, has been questioned by several
authors (Muzik et al., 2000; Burgund et al., 2002; Wilke and Holland,
2003; Hoeksma et al., 2005; Machilsen et al., 2007; Murgasova et al.,
aye), scott.holland@cchmc.org
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2007). To this end Wilke et al. (2003) created a pediatric template
(CCHMC) using brain images from a large number of children between
the ages of 5 and 18. They demonstrated the misclassification that can
result from using the adult template and prior probabilities for spatial
normalization of pediatric data. There have been some attempts to
construct an infant template; however, these are based on a very
limited number of infants (Dehaene-Lambertz et al., 2002; Srinivasan
et al., 2007; Kazemi et al., 2007).

Similarly, in morphological studies based on segmentation of the
human brain into different tissue classes, most approaches use a priori
reference data to improve classification of brain tissue so that classi-
fication is not only based upon the input voxel intensity information
alone. The recently-proposed unified segmentation framework
offered within the SPM5 environment, integrates tissue classification
with bias correction and image registration, and it estimates the
associated parameters by minimizing the resulting objective function
(Ashburner and Friston, 2005). However, if the prior data is taken from
an adult reference population, it may not be an appropriate template
for data from special populations, such as that from infants.

In this study we set out to construct an infant brain template and
associated probability maps for GM, WM and CSF that can be used for
registration and as a priori information in segmenting new infant
brain images. We constructed an infant brain template and a priori
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Table 1
Age and gender distribution of the study population

Age (months) Gender Total

Female Male

9 6 8 14
10 5 2 7
11 7 5 12
12 7 7 14
13 7 3 10
14 10 2 12
15 3 4 7
Total 45 31 76
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data using high quality T1-weighted 3 Tesla magnetic resonance (MR)
images from 76 infants whose age ranged from 9 to 15 months. We
utilized the unified segmentation procedure implemented in Statis-
tical Parameter Mapping (SPM5) software (Wellcome Department,
University College, London, UK), but modified it to include a Hidden
Markov Random Field (HMRF) model as an additional spatial
constraint (Cuadra et al., 2005). We also modified the default
segmentation procedure provided in SPM5 in order to omit the use
of the adult a priori data from the tissue probability estimates. The
new segmentation algorithm is based on a Gaussian Mixture Model,
but in contrast to the SPM5 segmentation (default) algorithm the final
tissue probabilities are estimated without tissue priors (Gaser et al.,
2007). In an effort to further reduce the impact of the adult prior data,
we employed a two-pass approach. In the first pass the adult a priori
data are used. Then in the second pass, the infant probability data
generated by the first pass approach are used.

After constructing infant brain image templates and tissue
probability maps using the new methods, we quantified the
magnitude of differences between the newly constructed infant
population data and MNI adult reference data or CCHMC pediatric
reference data. Quantitative comparisons are summarized in Table 2
for convenience.

Materials and methods

Subjects

Our subjects were drawn from two different, currently ongoing
protocols. The first protocol is testing fMRI of auditory language
stimulation in hearing-impaired infants at or near 12 months of age.
Infants with normal hearing and hearing impairment were recruited
to compare fMRI results with auditory and speech stimulation
between the two groups. This protocol is designed to test whether
fMRI of auditory language stimulation in a hearing-impaired infant
can provide specific, clinically relevant details about the child's
auditory perception and processing ability. Specifically infants
between the ages of 9 and 15 months (12±3) were included in the
protocol, and currently data for 28 (9 male and 19 female) hearing-
impaired and normal hearing control subjects is available for
processing.

In order to increase the number of subjects for the template
construction we include additional infants from a second protocol.
This protocol includes infants referred for clinical brain imaging with
MRI for clinical diagnosis of various indications. From this protocol,
forty nine infants (22 male and 27 female; age range 9–15 months)
were found to have normal brain anatomy, confirmed by the attending
neuroradiologist at the time of scan. They were thus included in the
current study.

Overall, MR images from 77 infants (46 female and 31 male) aged
between 9 and 15 months, were acquired from sedated infants being
scanned for clinical indications as described above. Imaging data from
one 9 month old female infant was excluded, as image artifacts
interfered with the segmentation procedure. The remaining 76 MR
images were visually confirmed to be free of artifacts and were thus
used for all subsequent analyses. The age distribution of the resulting
76 infants (45 female and 31 male) is presented in Table 1. Infants in
both protocols were sedated using either chloral hydrate 75 mg/kg or
Nembutal 5 mg/kg. Institutional Review Board approval was obtained
for this study which involves retrospective data analysis.

Data acquisition and preparation

Infants were imaged with a clinical 3 Tesla clinical MRI Scanner
(Siemens Trio, Siemens Medizintechnik, Erlangen, Germany). High
resolution T1-weighted, 3D brain images were acquired using the
Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE)
method (Mugler and Brookeman,1990). The imaging parameters used
were TR=2000 ms, TE=2.93 ms for n=68 subjects, and TR=1900 ms,
TE=4.13ms for n=8 subjects; flip angle=12°, FOV 15×20×19.2 cm and
matrix [208–512]×[256–512]×[128–192] resolution. All data was
imported from DICOM format into ANALYZE format for analysis
using the SPM5DICOM import function. All processingwas done using
SPM5 or stand-alone scripts running in MATLAB. Instead of manually
orienting the data using the display option in SPM5, an automated
center of mass approach was used.

Processing: template and a priori data construction

Our objective was to construct an infant template and a priori data
that can be used for improved spatial normalization and the
morphological study of infant data. In order to achieve this we
employed two different processing strategies. The first strategy uses
the standard unified segmentation approach that utilizes adult a priori
data for segmentation. This is the default strategy in SPM5, though we
modified it to incorporate the HMRF model to additionally introduce
spatial constraint. This modification to the algorithm helps in
determining the probability of a given voxel to belong to a tissue
class which is achieved by calculating the MRF energy for a given
voxel, based on its proximity to the surrounding voxels. The unified
segmentation approach in SPM5 finds a Maximum a Posteriori (MAP)
solution by repeatedly alternating among classification, bias correc-
tion and registration steps in a unified generative model involving a
mixture of Gaussians, bias correction component and warping (non-
linear registration) component (Ashburner and Friston, 2005). This
process is indicated by the segmentation engine diagramed in Fig. 1.
This strategy will be referred to as the default strategy for the rest of
the paper. The second processing strategy, basing segmentation solely
on current voxel intensity and not using prior information, has only
recently been implemented as a custom function within the unified
segmentation approach in SPM5. The segmentation is based on a
Gaussian mixture model and the final tissue probabilities are
estimated without tissue priors. We additionally applied the HMRF
model to introduce spatial constraints (Cuadra et al., 2005). This
strategy will be referred to as the new strategy for the rest of the paper.
A flow chart outlining both strategies is diagrammed in Fig. 1.

Each strategy was deployed using two different approaches, where
first we established a first pass template and a priori data based on the
adult or pediatric reference data. These templates are then used in a
second iteration as reference data to yield a second pass template and
a priori data. To clarify the two strategies combined with two
approaches employed and the comparisons resulting from these
combinations, a flow chart is provided in Fig. 1.

For all processing strategies and approaches, a light cleaning
procedure within the SPM5 segmentation procedure was used in
order to remove residual non-brain tissue from the segmented
images. All normalized data are written out with the same resolution
and dimension (157x189x156 voxels at 1×1×1 mm resolution) and,
then averaged to create a priori probability maps of GM, WM and CSF.



Fig. 1. Overview of infant template construction. Initially all images are registered to the adult/pediatric template. After registration a segmentation estimation procedure is used to
estimate the parameters by iteratively going through segmentation (S), bias correction (BC), deformation (DF) and priors (P) until convergence criteria (C) are met. After this step two
strategies are used for calculation of the tissue probability maps. The first (default) strategy includes adult prior probabilities for distribution of GM, WM and CSF based on adult/
pediatric data indicated by the inclusion of the blue box (P). The second (new) strategy does not use prior probability distributions in the calculation of the tissue probability maps;
instead it only uses the intensity of the T1 images. Then a Hidden Markov Random Field (HMRF) process is applied to the resulting image, normalized and averaged to produce the
first pass template. Second pass templates are obtained in similar fashion except the first pass template is used for registration and normalization. Key: DA1/DP1=First pass adult/
pediatric template via default strategy; DA2/DP2=Second pass adult/pediatric template via default strategy; NA1/NP1=First pass adult/pediatric template via new strategy; NA2/
NP2=Second pass adult/pediatric template via new strategy. Bold font indicates adult data while italic font indicates pediatric data. Comparisons: 1. (g-a) and (i-a); 2. (h-b) and
(j-b); 3. (g-i); 4. (g-c), (i-e) and (h-d), (j-f); using number conventions from Table 2.
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Similarly, we applied the normalization parameters obtained from
the segmentation step to write out each individual normalized
T1-weighted image and calculated the average of all normalized
T1-images (Fig. 2).

Assessment of differences

Comparison with adult and pediatric reference data
The first round of comparison (comparison 1, Table 2) involves data

obtained from the two processing strategies against the default SPM5
adult a priori data. The adult data is based on the scans of 152 young,
healthy subjects from Montreal Neurological Institute (MNI-152). The
second round of comparison (comparison 2, Table 2) uses data
obtained from the two processing strategies against the pediatric a
priori data. The pediatric data is based on 200 healthy children
between the ages of 5 and 18 years, and is provided by Cincinnati
Children's Hospital Medical Center (CCHMC2-200), available at www.
irc.cchmc.org/software/pedbrain.php. An outline of the comparison
strategies is presented in Table 2.

Comparison between processing strategies and approaches
In addition to these comparisons we also assessed the impact on

the infant template and the corresponding infant a priori data images
resulting from the two processing strategies (comparison 3, Table 2).

http://www.irc.cchmc.org/software/pedbrain.php
http://www.irc.cchmc.org/software/pedbrain.php


Fig. 2. Display of adult reference data and infant templates including GM, WM and CSF probability maps. The top panel is for the adult data (SPM 5 default), the middle panel is for
infant data processed using the new strategy and the bottom panel is for infant data processed using the default strategy as outlined in Fig. 1. The displayed infant data is based on
second pass output.

Table 2
Summary of the different comparisons made

Comparison Image 1 Image 2 Differences

1 New Infant GM/WM/CSF
constructed under the new
and default strategies.
(Initial registration was with
adult reference data).
(i) and (g)

Adult prior
GM/WM/CSF (a)

Fig. 3

2 New Infant GM/WM/CSF
constructed under the new
and default strategies.
(Initial registration was
with pediatric reference
data). (j) and (h)

Pediatric prior
GM/WM/CSF (b)

Fig. 4

3 New infant GM/WM/CSF
constructed under the new
strategy (i)

New infant GM/WM/CSF
constructed under the
default strategy (g)

Fig. 5

4 First pass infant
GM/WM/CSF constructed
under both strategies
(e) and (c)

Second pass infant
GM/WM/CSF constructed
under both strategies
(i) and (g)

Fig. 6

Except for comparison 4, all comparisons are based on second pass images. Bold letters
indicate image reference to Fig. 1.
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Using this comparisonwe are able to evaluate the impact of the use of
adult prior data in the resulting images. We also compared the images
obtained from the two approaches used for each strategy. Specifically
the difference between first pass (use of adult data) and second pass
(use of infant data) data are compared (comparison 4, Table 2).

We used the SPM image calculation function to calculate the
differences between pairs of images. We displayed the difference
between two images using MRIcro with color coding, where red and
yellow indicated higher tissue concentration in the infant data (i.e.
infantNadult, or infantNpediatric) and blue indicated lower tissue
concentration in the infant data (infantbadult, or infantbpediatric).
Only tissue probability differences of at least 20% are displayed in the
color overlays (Figs. 3 and 4). All results are in neurological
orientation. We also display these differences using a histogram,
illustrating the distribution of these differences. The histograms are
obtained by retaining voxels from the difference image that are
greater than 0.2 and less than −0.2. Only tissue probability differences
of 20% or more (i.e. differences in tissue probabilities that are N0.2 or b
−0.2) are plotted in the histograms in Figs. 3–6. The percentage of
voxels classified consistently (within the 20% limit) or inconsistently
between the strategies and approaches are also indicated in the
figures.

Results

All processing strategies, including the use of adult a priori data as
a reference template for registration and segmentation, produce high
quality images as displayed in Fig. 2. However there are significant
differences in tissue classifications between the newly created infant
and the adult (Fig. 3) as well the infant and pediatric (Fig. 4) GM, WM
and CSF tissue probability maps in both strategies employed here. The
degree of discordance seems to be higher when the default strategy is
used (via the default SPM5 segmentation routine) to generate the
resulting infant data. In general the results show that in the infant
reference data, brain tissues tend to be classified as GM with higher
probability compared to adult reference data (Fig. 3) and to a lesser
extent with pediatric reference data (Fig. 4), as indicated by the red
and yellow colors.

However this seems to occur at the expense of WM, which is
presented with higher probability in both the adult and pediatric
reference data as indicated by the blue color. With infant data
generated using the new strategy versus adult reference data, GM is
classified with greater probability at the superior frontal gyrus, medial
frontal gyrus, anterior cingulate, putamen, and thalamus as shown in
Fig. 3 (top). In addition to these areas, comparison of infant data
obtained using the default strategy versus the adult reference data
results in additional pixels in the inferior frontal gyrus, middle



Fig. 3. Comparison of adult a priori data and infant GM, WM and CSF distributions constructed using the new (top panel) and default (bottom panel) strategies as outlined in Fig. 1. Differences are displayed as an overlay on the infant data to
show spatial location (left panels, where red and yellow indicates infant probability is greater than adult probability while blue is for the reverse effect), and as a histogram to show their distribution (right panels). Results shown are for
differences of at least 20% in tissue probability and are based on the second pass output. For the histograms, the x-axis represents the magnitude of differences and the y-axis the corresponding number of voxels. The flat line between −0.2 and
0.2 indicates the 20% threshold used, while the curves on the right and left indicate where the infant tissue probability is greater or less than the adult data respectively. Percentages of voxels in each segment of the histogram (i.e. b−0.2, no
difference, N0.2) are listed below the horizontal axis.

725
M
.A

ltaye
et

al./
N
euroIm

age
43

(2008)
721

–730



Fig. 4. Comparison of pediatric a priori data versus infant GM,WM and CSF distributions constructed using new (top panel) and default (bottom panel) strategies as outlined in Fig. 1. Differences are displayed as an overlay on the infant data to
show spatial location (left panels, where red and yellow indicates infant probability is greater than pediatric probability while blue is for the reverse effect), and as a histogram to show their distribution (right panels). Results shown are for
differences of at least 20% in tissue probability and are based on the second pass output. For the histograms, the x-axis represents the magnitude of differences and the y-axis the corresponding number of voxels. The flat line between −0.2 and
0.2 indicates the 20% threshold used, while the curves on the right and left indicate where the infant tissue probability is greater or less than the pediatric data respectively. Percentages of voxels in each segment of the histogram (i.e. b−0.2, no
difference, N0.2) are listed below the horizontal axis.
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Fig. 5. Comparison of GM, WM and CSF probability distributions in second pass infant data obtained with the new and default strategy. In the top panel adult and in the bottom
pediatric reference data were used for initial registration. The histograms indicate the distribution of the differences for each tissue class. Results shown are for differences of at least
20% in tissue probability. For the histograms, the x-axis represents the magnitude of differences and the y-axis the corresponding number of voxels. The flat line between −0.2 and 0.2
indicates the 20% threshold used, while the curves on the right and left indicate where the infant tissue probability obtained using the new strategy is greater or less than the infant
data obtained using the default strategy respectively. Percentages of voxels in each segment of the histogram (i.e. b−0.2, no difference, N0.2) are listed below the horizontal axis.
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occipital gyrus and superior frontal gyrus classified as GM with a
higher probability: Fig. 3 (bottom).

We also used the proportion of voxels that showed a difference of
20% or more in classification probability, to additionally quantify the
graphically depicted data shown in Figs. 3 and 4 (left panel). These
proportions are calculated by counting the number of voxels that are
below −0.2 or above 0.2 (20% threshold rule) and dividing it by the
total number of voxel in the tissue under consideration (4.6 million
pixels). Each histogram shown in Figs. 3 to 6 is divided into three
distinct areas. The left and right “bumps” represent the proportion of
voxels that are below −0.2 and above 0.2 respectively when looking at
the distribution of the difference of the two images considered. The
middle section between (±0.2) corresponds to the proportion of
voxels that are classified consistently by both methods, according to
the 20% threshold rule used in this paper. The proportion of voxels
in each segment of the histogram is indicated below the horizontal
axis of Figs. 3–6. The sum of the proportion in the three areas
should add to 1.

Additionally, if one strategy or approach causes voxels to
misclassify as one tissue class (for example GM) then we expect an
equivalent number of voxels to be lost from the rest of the tissue
classes combined (for example WM+CSF). However in our case since
we used a 20% threshold rule the numbers may not always balance out
because some voxels may also be shifted in and out of the 20%
threshold group. For example in Fig. 3 (right top panel) the proportion
of voxels that are misclassified as high for GM is 9%, while the
proportion of voxels that are misclassified as low for the combined
WM and CSF is 10% (9%+1%). Although close the proportions are not
exactly the same, this is because 1% of the voxels classified as high for
GM shifts into the concordant classification group.

When we compare the newly created infant GM, WM and CSF
using the new strategy with the corresponding adult reference data:
Fig. 3 (top) the proportion of voxels that showed a difference of 20% or
more were 12%, 10% and 11% for GM, WM and CSF respectively. The
magnitude of these proportions increases to 20%,16%, and 24.2% when
the infant data is constructed using the default strategy: Fig. 3
(bottom). This indicates that the use of adult a priori data in the
segmentation step, as is the case for the default strategy, increases the
number of discordant (beyond 20% difference in probability) voxels.
Among the voxels that show a difference of 20% or more, the
proportion of voxels that the newly constructed infant data classifies
with higher probability, were 75%, 10% and 91% for GM, WM and CSF
respectively when the data is obtained using the new strategy. These
proportions were 80%, 6.2% and 99% when the comparison infant data
was created with the default strategy. These distributions are dis-
played on the right panel of Fig. 3. This shows that the newly created
infant data classifies GM and CSF with higher probability but at the
expense of WM which was classified with lower probability.

Similar patterns were observed when we compare the newly
created infant data with the corresponding pediatric reference data.
When comparing the infant data created using the new strategy with
the pediatric reference data, the proportions of voxels that show a
difference of 20% ormore in classification probability were 11%, 7% and
11% for GM, WM and CSF respectively: Fig. 4 (top). These proportions
were 11%, 7% and 27% when the infant data was constructed using the
default strategy: Fig. 4 (bottom). Unlike the comparison of the infant



Fig. 6. Comparison of first pass and second pass probability maps for images prepared using the new (left panel) and default (right panel) strategies, for adult (top panel) and pediatric (bottom panel) reference data. The histograms show the
distribution of these differences for each tissue class and strategy. Results shown are for differences of at least 20% in tissue probability. The x-axis represents themagnitude of differences and the y-axis the corresponding number of voxels. The
flat line between −0.2 and 0.2 indicates the 20% threshold used, while the curves on the right and left indicate where the infant tissue probability obtained using the second pass approach is greater or less than the infant data obtained from the
first pass approach respectively. Percentages of voxels in each segment of the histogram (i.e. b−0.2, no difference, N0.2) are listed below the horizontal axis.
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data with the adult reference data, where the use of the default
strategy increased the proportion of voxels that shows a difference of
20 % or more; here the proportions are very similar (except for CSF) for
both strategies used. In addition the proportion of voxels classified
with high probability as GM, WM, and CSF in the second pass infant
data that is constructed using the new strategy are 72%, 28.6% and
81.8% respectively. These proportions were 72.7%,14.3% and 96%when
the infant data was constructed using the default strategy. These
distributions are displayed in the right panel of Fig. 4.

The comparisons between the images obtained using the new and
the default strategy resulted in similar images with only moderate
differences as defined here. The proportion of voxels that show a
difference of 20% or more between the images resulted from the two
strategies where adult reference data was used for initial registration
(Fig. 1: DA2 and NA2), were 4.4%, 1% and 17% for GM, WM and CSF
respectively (Fig. 5: top). Similar but consistently greater differences
were observed when comparing the newly created infant data using
the two strategies where the initial registrationwas based on pediatric
reference data (Fig. 1: DP2 AND NP2). In this case the proportions of
voxels that differ by more than 20% were 7%, 2.2% and 21.2% for GM,
WM and CSF respectively (Fig. 5: bottom).

The two-pass approach we employed to minimize the impact of
the adult prior data results in similar tissue classification in the final
infant templates, with very little difference between the images
obtained using the two approaches as shown in Fig. 6. The pro-
portion of voxels that show a difference of 20% or more were less
than 1% for both GM and WM regardless of the strategy used to
generate the infant data when the initial registration were with
adult data. However 2% of voxels showed a difference of 20% or
more for CSF probability, when the infant data is constructed using
the new strategy and 6.7% of voxels when using the default strategy
(Fig. 6: top).

Similar patterns but with slightly higher percentages of discordant
voxels were observed when the first pass and second pass approaches
were compared for images generated using the pediatric reference
data for initial registration. Regardless of the strategy used to generate
the infant images, the proportions of voxels that exhibit 20% or greater
differences were less than 1% for both GM and WM. However for CSF
these proportions were 3% when infant data is generated under the
new strategy and 15.4% under the default strategy (Fig. 6: bottom).

Discussion

In this article, we present a procedure to create an infant template
and a priori probability maps of GM, WM and CSF. We used a novel
approach that does not require the use of prior data for segmenting
brain images in an effort to reduce the impact of inappropriate adult or
pediatric prior data. We showed that the use of the default adult or
pediatric template to segment the infant data will result in
misclassifications of infant tissue, as shown in Figs. 3 and 4. This is
consistent with the findings reported when comparing the use of
adult a priori data for segmenting pediatric data (Wilke et al., 2003)
and is likely due to the different shape and size of developing infant
brains as well as different GM/WM ratios in the infant brain relative to
children and adults.

The observed difference between the newly created infant data
and the pediatric reference data (Fig. 1: h-b and j-b) is less severe
compared to the difference between the infant and adult reference
data (Fig. 1: g-a and i-a) as indicated by the proportion of discordant
voxels, particularlywhen the default strategywas used to generate the
infant data (Fig. 1: h-b and g-a). However, the appearance of the
observed discordance between the infant and pediatric data
mimicked the difference observed between the infant and adult
data suggesting that the pediatric data is closer to the adult data in
tissue distribution than to the infant data (Figs. 3 and 4). This is
apparent when we recognize that the proportion of voxels classified
with high probability in the second pass infant data are very similar
whether adult or pediatric reference data were used for initial
registration (Fig. 1: g-a and h-b: i-a and j-b). This is depicted in the
right panel of Figs. 3 and 4.

The indirect comparison between the two processing strategies
through their comparison with the adult reference data as shown in
Fig. 3, suggests that the use of the default strategy results in a higher
number of discordant voxel classifications than the new strategy. This
difference is more precisely depicted in the direct comparison of
images obtained from the two strategies as displayed on Fig. 5. This
suggests that the new strategy with less discordant voxels may
provide more consistent classification for infant brain image data.

However, regardless of the strategy employed to obtain the infant
template, our results demonstrate the importance of using appro-
priately constructed infant templates for future normalization and
segmentation of infant images, since the alternative of using adult or
pediatric templates will result in misclassification of tissue class as
shown in Figs. 3 and 4.

The comparison between images produced using first pass (using
adult data) and second pass (using the resulting infant data from first
pass procedure) images shows very little difference (Fig. 6). This is
likely due to the fact that the priors are warped to the input data
during the first pass, so that the influence of the priors is diminished in
final images. In addition the use of affine and non-linear transforma-
tion in both approaches (first and second pass) coupled with the
introduction of the HMRF model, to apply spatial constraints from
neighboring voxels, might further reduce the impact of the adult prior
data during the first pass segmentation step.

Limitations

The MR data is obtained from infants sedated by either chloral
hydrate or Nembutal. The impact of the sedation, if any, on the
resulting MR images is unknown. Although unlikely, it is possible that
the sedation might have an impact on T1 image intensity distribution
and the resulting template and probability maps through either a
direct effect or indirectly due to alterations in cerebral perfusion
induced by the drugs.

The purpose of spatial normalization is to be able to compare
brain activations or structural changes across individuals, which will
always entail deforming the contributing subjects to a common
spatial reference frame. Comparing the activation patterns from
children and adults and finding the evolution that takes place in
childhood is only possible if a common reference frame is used for the
subjects being compared. Considering the advantages that such a
common spatial frame offers over myriads of study-specific custom
reference frames, we opted to use the most commonly-used reference
frame for our study here (MNI-152). While this choice is arguable, we
still believe that the advantages outweigh the disadvantages at this
point.

The original study that motivated construction of the template and
probability maps using the new methods reported here focused on
infants at nominally 12 months of age (±3 months) as described above
in the Materials and methods: Subjects section. So for our purposes,
the age span of infants selected for template constructionmatches our
population exactly. However, even this extremely narrow age range
might be too wide to preserve fine scale changes over this 6 month
period of rapid brain development (Huttenlocher, 1979). Also, the
applicability of the specific template and probability maps we offer
may be limited to other studies of 1 year olds. The methods described
here provide potential users with a completely general formula to
construct their own prior-free, templates as needed. In this context,
our specific data set is just an example of the power of the new
method. For readers who may find it helpful to use our template
directly we have made it available on our website at http://www.irc.
cchmc.org/software.

http://www.irc.cchmc.org/software
http://www.irc.cchmc.org/software
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Conclusion

In the absence of a gold standard, a direct comparison between the
proposed new procedure and the default procedure may not establish
which procedure is more accurate. However the comparison pre-
sented here of the new and default procedure with a priori reference
data from adults or children, suggests that the new procedure is
superior for use in segmentation of infant brain images as it results in
less severe misclassification when compared to the default procedure
using adult a priori probability maps. The new infant template and a
priori data obtained from the new procedure is therefore recom-
mended for use as a reference data for spatial normalization and
segmentation of infant brain MRI data.
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